python运维开发常用模块(一)psutil

1.模块简介

psutil是一个跨平台库(http://code.google.com/p/psutil/),能够轻 松实现获取系统运行的进程和系统利用率(包括CPU、内存、磁盘、网 络等)信息。它主要应用于系统监控,分析和限制系统资源及进程的管 理。它实现了同等命令行工具提供的功能,如ps、top、lsof、netstat、 ifconfig、who、df、kill、free、nice、ionice、iostat、iotop、uptime、 pidof、tty、taskset、pmap等。目前支持32位和64位的Linux、 Windows、OS X、FreeBSD和Sun Solaris等操作系统,支持从2.4到3.4的 Python版本,目前最新版本为2.0.0。

通常我们获取操作系统信息往往采 用编写shell来实现,如获取当前物理内存总大小及已使用大小,shell命 令如下:

相比较而言,使用psutil库实现则更加简单明了。psutil大小单位一 般都采用字节,如下:

2.获取系统性能信息

采集系统的基本性能信息包括CPU、内存、磁盘、网络等,可以 完整描述当前系统的运行状态及质量。psutil模块已经封装了这些方法, 用户可以根据自身的应用场景,调用相应的方法来满足需求,非常简单 实用。

(1)CPU信息 Linux操作系统的CPU利用率有以下几个部分: ·

User Time,执行用户进程的时间百分比; ·

System Time,执行内核进程和中断的时间百分比; ·

Wait IO,由于IO等待而使CPU处于idle(空闲)状态的时间百分 比; ·

Idle,CPU处于idle状态的时间百分比。

我们使用Python的psutil.cpu_times()方法可以非常简单地得到这 些信息,同时也可以获取CPU的硬件相关信息,比如CPU的物理个数与 逻辑个数,具体见下面的操作例子:

获取全部cpu信息

>>> psutil.cpu_times()
scputimes(user=55.56, nice=0.0, system=28.83, idle=2811.87, iowait=71.64, irq=0.0, softirq=0.4, steal=0.0, guest=0.0, guest_nice=0.0)

获取cpu某个指标的cpu 信息

>>> psutil.cpu_times().user   #cpu用户时间百分比
57.08
>>> psutil.cpu_count()        #逻辑cpu的数量
1
>>> psutil.cpu_count(logical=False) #物理cpu的数量
1

(2)内存信息

Linux系统的内存利用率信息涉及total(内存总数)、used(已使 用的内存数)、free(空闲内存数)、buffers(缓冲使用数)、 cache(缓存使用数)、swap(交换分区使用数)等,分别使用 psutil.virtual_memory()与psutil.swap_memory()方法获取这些信 息,具体见下面的操作例子:

获取全部内存信息

>>> mem=psutil.virtual_memory()
>>> mem
svmem(total=1928081408, available=1635614720, percent=15.2, used=117481472, free=1023430656, active=433111040, inactive=346320896, buffers=55558144, cached=731611136, shared=524288, slab=91049984)

获取内存某个指标信息

>>> mem.total #总内存
1928081408
>>> mem.free  #空闲内存
1023430656
>>> psutil.swap_memory()  #swap分区信息
sswap(total=0, used=0, free=0, percent=0.0, sin=0, sout=0)

(3)磁盘信息

在系统的所有磁盘信息中,我们更加关注磁盘的利用率及IO信 息,其中磁盘利用率使用psutil.disk_usage方法获取。磁盘IO信息包括 read_count(读IO数)、write_count(写IO数)、read_bytes(IO读字节 数)、write_bytes(IO写字节数)、read_time(磁盘读时间)、 write_time(磁盘写时间)等。这些IO信息可以使用 psutil.disk_io_counters()获取,具体见下面的操作例子:

>>> psutil.disk_partitions()  #获取磁盘的挂载信息
[sdiskpart(device=‘/dev/vda1‘, mountpoint=‘/‘, fstype=‘ext4‘, opts=‘rw,noatime,data=ordered‘)]
>>> psutil.disk_usage(‘/‘)    #获取根目录的磁盘使用情况
sdiskusage(total=52709261312, used=1797283840, free=48210923520, percent=3.6)
>>> psutil.disk_io_counters() #获取磁盘整体io的信息
sdiskio(read_count=17654, write_count=16921, read_bytes=336112640, write_bytes=1199091712, read_time=94260, write_time=2551193, read_merged_count=251, write_merged_count=12212, busy_time=111944)
>>> psutil.disk_io_counters(perdisk=True) #更细粒度的获取每块盘的磁盘io信息
{‘vda‘: sdiskio(read_count=16442, write_count=17139, read_bytes=296236032, write_bytes=1200701440, read_time=93595, write_time=2554037, read_merged_count=251, write_merged_count=12330, busy_time=111885), ‘sr0‘: sdiskio(read_count=1212, write_count=0, read_bytes=39876608, write_bytes=0, read_time=665, write_time=0, read_merged_count=0, write_merged_count=0, busy_time=513), ‘loop0‘: sdiskio(read_count=0, write_count=0, read_bytes=0, write_bytes=0, read_time=0, write_time=0, read_merged_count=0, write_merged_count=0, busy_time=0), ‘vda1‘: sdiskio(read_count=16412, write_count=16436, read_bytes=295162880, write_bytes=1200701440, read_time=93521, write_time=2552650, read_merged_count=251, write_merged_count=12330, busy_time=110707)}

(4)网络信息

系统的网络信息与磁盘IO类似,涉及几个关键点,包括 bytes_sent(发送字节数)、bytes_recv=28220119(接收字节数)、 packets_sent=200978(发送数据包数)、packets_recv=212672(接收数 据包数)等。这些网络信息使用psutil.net_io_counters()方法获取,具 体见下面的操作例子:

>>> psutil.net_io_counters()  #使用psutil.net_io_counters获取网络总的IO信 息,默人pernic=False
snetio(bytes_sent=3097792, bytes_recv=84277258, packets_sent=30395, packets_recv=76803, errin=0, errout=0, dropin=0, dropout=0)
>>> psutil.net_io_counters(pernic=True)  #pernic=True获取每个网络接口的网络io信息
{‘lo‘: snetio(bytes_sent=0, bytes_recv=0, packets_sent=0, packets_recv=0, errin=0, errout=0, dropin=0, dropout=0), ‘eth0‘: snetio(bytes_sent=3151297, bytes_recv=84313463, packets_sent=30879, packets_recv=77288, errin=0, errout=0, dropin=0, dropout=0)}

(5)其他系统信息

除了前面介绍的几个获取系统基本信息的方法,psutil模块还支持 获取用户登录、开机时间等信息,具体见下面的操作例子:

>>> psutil.users()
[suser(name=‘root‘, terminal=‘pts/0‘, host=‘58.101.51.163‘, started=1556753152.0, pid=10408), suser(name=‘root‘, terminal=‘pts/1‘, host=‘58.101.51.163‘, started=1556755328.0, pid=13692)]
>>> import psutil,datetime
>>> psutil.boot_time() #系统开机时间,时间戳的形式
1556752934.0
>>> datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S")  #格式转化成自然时间
‘2019-05-02 07:22:14‘

系统进程管理方法 获得当前系统的进程信息,可以让运维人员得知应用程序的运行 状态,包括进程的启动时间、查看或设置CPU亲和度、内存使用率、IO 信息、socket连接、线程数等,这些信息可以呈现出指定进程是否存 活、资源利用情况,为开发人员的代码优化、问题定位提供很好的数据 参考。

(1)进程信息 psutil模块在获取进程信息方面也提供了很好的支持,包括使用 psutil.pids()方法获取所有进程PID,使用psutil.Process()方法获取 单个进程的名称、路径、状态、系统资源利用率等信息,具体见下面的 操作例子:

>>> import psutil

>>> psutil.pids() #列出所有进程PID
[1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30, 38, 39, 40, 41, 42, 43, 56, 102, 221, 228, 229, 230, 231, 233, 234, 238, 253, 254, 328, 358, 360, 443, 468, 470, 473, 474, 476, 679, 783, 858, 864, 879, 880, 1240, 3015, 3304, 3576, 3586, 3587, 9028, 9119, 10387, 10408, 13377, 13690, 13692, 18041, 18450, 18874, 18947]
>>> p=psutil.Process(10387) #实例化一个Process对象,参数为一进程PID
>>> p.name()  #进程名
‘sshd‘
>>> p.exe()   #进程执行路径
‘/usr/sbin/sshd‘
>>> p.cwd()     #进程工作目录绝对路径
‘/‘>>> p.status()  #进程状态

  ‘sleeping‘

>>> p.create_time()  #进程创建时间,时间戳格式
1556753100.62
>>> p.uids()       #进程uid信息
puids(real=0, effective=0, saved=0)
>>> p.gids()       #进程gid信息
pgids(real=0, effective=0, saved=0)
>>> p.cpu_times()  #进程CPU时间信息,包括user、system两个CPU时间
pcputimes(user=0.11, system=0.18, children_user=0.0, children_system=0.0)
>>> p.memory_percent() #进程内存利用率
0.28764262634288107
>>> p.io_counters()  #进程IO信息,包括读写IO数及字节数
pio(read_count=4335, write_count=3971, read_bytes=0, write_bytes=0, read_chars=403466, write_chars=301488)

>>> p.connections()   #返回打开进程socket的namedutples列表,包括fs、family、 laddr
[pconn(fd=3, family=2, type=1, laddr=addr(ip=‘172.27.0.7‘, port=22), raddr=addr(ip=‘58.101.51.163‘, port=38431), status=‘ESTABLISHED‘)]
>>> p.num_threads()  #进程开启的线程数
1

#进程开启的线程数

psutil提供的popen类的作用是获取用户启动的应用程序进程信息, 以便跟踪程序进程的运行状态。具体实现方法如下:

>>> import psutil
>>> from subprocess import PIPE
>>> p=psutil.Popen(["/usr/bin/python","-c" "print (‘hello‘)"],stdout=PIPE)
>>> p.name()
‘python‘
>>> p.username()
‘root‘
>>> p.communicate()
(‘hello\n‘, None)
>>> p.cpu_times()   #得到进程运行的CPU时间
pcputimes(user=0.01, system=0.0, children_user=0.0, children_system=0.0)

3.关于psutil模块更多用法

>>> dir(psutil)
[‘AF_LINK‘, ‘AIX‘, ‘AccessDenied‘, ‘BSD‘, ‘CONN_CLOSE‘, ‘CONN_CLOSE_WAIT‘, ‘CONN_CLOSING‘, ‘CONN_ESTABLISHED‘, ‘CONN_FIN_WAIT1‘, ‘CONN_FIN_WAIT2‘, ‘CONN_LAST_ACK‘, ‘CONN_LISTEN‘, ‘CONN_NONE‘, ‘CONN_SYN_RECV‘, ‘CONN_SYN_SENT‘, ‘CONN_TIME_WAIT‘, ‘Error‘, ‘FREEBSD‘, ‘IOPRIO_CLASS_BE‘, ‘IOPRIO_CLASS_IDLE‘, ‘IOPRIO_CLASS_NONE‘, ‘IOPRIO_CLASS_RT‘, ‘LINUX‘, ‘MACOS‘, ‘NETBSD‘, ‘NIC_DUPLEX_FULL‘, ‘NIC_DUPLEX_HALF‘, ‘NIC_DUPLEX_UNKNOWN‘, ‘NoSuchProcess‘, ‘OPENBSD‘, ‘OSX‘, ‘POSIX‘, ‘POWER_TIME_UNKNOWN‘, ‘POWER_TIME_UNLIMITED‘, ‘PROCFS_PATH‘, ‘Popen‘, ‘Process‘, ‘RLIMIT_AS‘, ‘RLIMIT_CORE‘, ‘RLIMIT_CPU‘, ‘RLIMIT_DATA‘, ‘RLIMIT_FSIZE‘, ‘RLIMIT_LOCKS‘, ‘RLIMIT_MEMLOCK‘, ‘RLIMIT_MSGQUEUE‘, ‘RLIMIT_NICE‘, ‘RLIMIT_NOFILE‘, ‘RLIMIT_NPROC‘, ‘RLIMIT_RSS‘, ‘RLIMIT_RTPRIO‘, ‘RLIMIT_RTTIME‘, ‘RLIMIT_SIGPENDING‘, ‘RLIMIT_STACK‘, ‘RLIM_INFINITY‘, ‘STATUS_DEAD‘, ‘STATUS_DISK_SLEEP‘, ‘STATUS_IDLE‘, ‘STATUS_LOCKED‘, ‘STATUS_PARKED‘, ‘STATUS_RUNNING‘, ‘STATUS_SLEEPING‘, ‘STATUS_STOPPED‘, ‘STATUS_TRACING_STOP‘, ‘STATUS_WAITING‘, ‘STATUS_WAKING‘, ‘STATUS_ZOMBIE‘, ‘SUNOS‘, ‘TimeoutExpired‘, ‘WINDOWS‘, ‘ZombieProcess‘, ‘_LOWEST_PID‘, ‘_PY3‘, ‘_TOTAL_PHYMEM‘, ‘__all__‘, ‘__author__‘, ‘__builtins__‘, ‘__doc__‘, ‘__file__‘, ‘__name__‘, ‘__package__‘, ‘__path__‘, ‘__version__‘, ‘_as_dict_attrnames‘, ‘_assert_pid_not_reused‘, ‘_common‘, ‘_compat‘, ‘_cpu_busy_time‘, ‘_cpu_times_deltas‘, ‘_cpu_tot_time‘, ‘_last_cpu_times‘, ‘_last_cpu_times_2‘, ‘_last_per_cpu_times‘, ‘_last_per_cpu_times_2‘, ‘_lock‘, ‘_pmap‘, ‘_ppid_map‘, ‘_pprint_secs‘, ‘_pslinux‘, ‘_psplatform‘, ‘_psposix‘, ‘_psutil_linux‘, ‘_psutil_posix‘, ‘_timer‘, ‘_wrap_numbers‘, ‘boot_time‘, ‘collections‘, ‘contextlib‘, ‘cpu_count‘, ‘cpu_freq‘, ‘cpu_percent‘, ‘cpu_stats‘, ‘cpu_times‘, ‘cpu_times_percent‘, ‘datetime‘, ‘disk_io_counters‘, ‘disk_partitions‘, ‘disk_usage‘, ‘errno‘, ‘functools‘, ‘getloadavg‘, ‘long‘, ‘net_connections‘, ‘net_if_addrs‘, ‘net_if_stats‘, ‘net_io_counters‘, ‘os‘, ‘pid_exists‘, ‘pids‘, ‘process_iter‘, ‘pwd‘, ‘sensors_battery‘, ‘sensors_fans‘, ‘sensors_temperatures‘, ‘signal‘, ‘subprocess‘, ‘swap_memory‘, ‘sys‘, ‘test‘, ‘threading‘, ‘time‘, ‘users‘, ‘version_info‘, ‘virtual_memory‘, ‘wait_procs‘]

psutil官网:https://psutil.readthedocs.io/en/latest/

psuti的git:https://github.com/giampaolo/psutil

原文地址:https://www.cnblogs.com/benjamin77/p/10801643.html

时间: 2024-10-08 01:07:45

python运维开发常用模块(一)psutil的相关文章

python运维开发常用模块(四)文件对比模块difflib

1.difflib介绍 difflib作为 Python的标准库模块,无需安装,作用是对比文本之间的差异,且支持 输出可读性比较强的HTML文档,与Linux下的diff命令相似.我们可以 使用difflib对比代码.配置文件的差别,在版本控制方面是非常有用. Python 2.3或更高版本默认自带difflib模块,无需额外安装. 示例1:两个字符串的差异对比 [[email protected] part2]$ cat simple1.py #!/usr/bin/python #_*_cod

python运维开发(六)----模块续

内容目录 反射 模块 反射 利用字符串的形式去对象(模块)中操作(寻找/检查/删除/设置)成员,我们称之为反射. 方法: getattr delattr setattr hasattr 模块 补充: 特殊变量 __doc__ 注释 __file__ 当前py文件的路径 __packaged__ __cached__ __name__

Python运维开发基础01-语法基础【转】

开篇导语 整个Python运维开发教学采用的是最新的3.5.2版,当遇到2.x和3.x版本的不同点时,会采取演示的方式,让同学们了解. 教学预计分为四大部分,Python开发基础,Python开发进阶,Python网页编程,Python项目实战 Python开发基础分为语法基础篇,文件基础篇,函数基础篇,模块基础篇 语法基础篇中,我着重希望训练同学的是作为开发应该具备的一种逻辑思路. 文件基础篇中,我们需要练习的是如何将数据永久性的存储在硬盘上,提供读,写. 函数基础篇中,我重点是要引导同学们构

python运维开发笔记4

1.函数如何被调用,通过return返回值来调用 2.生成器和return区别 yield 生成器返回对象,可以迭代 可以执行 glob模块 类似shell中的正则匹配 shlex模块  Popen 将命令参数直接分词 cmd = "ps ax -o pid,ppid,cmd" shlex.split(cmd) ['ps','ax','-o','pid,ppid,cmd'] ['mysql','-u','root','-p123','-e','show processlist'] p

Python运维开发基础

Python基础知识分为以下几块 1.Python概述 2.基础语法 3.数据结构 4.Python进阶 5.实训案例 一.Python概述 1.Python简介 2.Hello World 3.搭建开发环境 4.习题 Python简介 尽管我是学计算机出身的,但是我对Python的认识是在毕业后.Python是我喜欢的语言,简洁,优美,容易使用.重要的一点是他是开源的项目. 官方网站 https://www.python.org 学习网站 http://www.okpython.com 对于简

python运维开发笔记5

diff -Nur Diff和patch是Linux标配的工具.在Windows上,也有移植的版本可以使用. 使用中注意: 1.保证文件名完全相同,避免只有大小写不同的文件存在. 2.Diff只能比较文本文件,二进制文件只能判断是否相同,不能记录差异.Diff根据文件的前几个字节判断文件是不是文本文件. 使用方法: 可以对单个文件或者整个目录树进行处理. 以最实用的方式举例: diff –Nur dir_old dir_new > dir.patch patch –p0 < dir.patch

重磅|0元学 Python运维开发,别再错过了

51reboot 运维开发又双叒叕的搞活动了,鉴于之前 51reboot 的活动反馈,每次活动结束后(或者已经结束了很长时间)还有人在问活动的事情.这一次小编先声明一下真的不想在此次活动结束后再听到类似下面的话了 我之前不知道有活动 (这个锅小编我背了) 这个活动还有吗? 我想了解一下这个活动 跟我说可以给我按活动价算吗? .......... 针对以上类似的询问小编在此统一回复大家: 好了,接下来进入今天的重中之重 本次活动:Python 运维开发——18天训练营 本课程为:网络班+面授班(北

python运维开发之第二天

一.模块初识: 1.模块定义 python是由一系列的模块组成的,每个模块就是一个py为后缀的文件,同时模块也是一个命名空间,从而避免了变量名称冲突的问题.模块我们就可以理解为lib库,如果需要使用某个模块中的函数或对象,则要导入这个模块才可以使用,除了系统默认的模块不需要导入外.  2.os,sys,paltform模块 模块导入import module import sys,os print('------打印环境变量------') print('打印sys.path结果',sys.pa

python运维开发(十二)----rabbitMQ、pymysql、SQLAchemy

内容目录: rabbitMQ python操作mysql,pymysql模块 Python ORM框架,SQLAchemy模块 Paramiko 其他with上下文切换 rabbitMQ RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消