手写数字识别-Tensorflow框架

#MNIST数据集
# coding: utf-8

# In[2]:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# In[3]:

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size = 50
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

# In[ ]:

原文地址:https://www.cnblogs.com/lifengwu/p/10432988.html

时间: 2024-11-06 09:46:25

手写数字识别-Tensorflow框架的相关文章

基于多层感知机的手写数字识别(Tensorflow实现)

import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os mnist = input_data.read_data_sets('MNIST_data', one_hot=True) class MNISTModel(object): def __init__(self, lr, batch_size, iter_num): self

Tensorflow实践 mnist手写数字识别

minst数据集                                         tensorflow的文档中就自带了mnist手写数字识别的例子,是一个很经典也比较简单的入门tensorflow的例子,非常值得自己动手亲自实践一下.由于我用的不是tensorflow中自带的mnist数据集,而是从kaggle的网站下载下来的,数据集有些不太一样,所以直接按照tensorflow官方文档上的参数训练的话还是踩了一些坑,特此记录. 首先从kaggle网站下载mnist数据集,一份是

tensorflow 基础学习五:MNIST手写数字识别

MNIST数据集介绍: from tensorflow.examples.tutorials.mnist import input_data # 载入MNIST数据集,如果指定地址下没有已经下载好的数据,tensorflow会自动下载数据 mnist=input_data.read_data_sets('.',one_hot=True) # 打印 Training data size:55000. print("Training data size: {}".format(mnist.

第二节,TensorFlow 使用前馈神经网络实现手写数字识别

一 感知器      感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695      感知器(Perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1.这种算法的局限性很大: 只能将数据分为 2 类 数据必须是线性可分的 虽然有这些局限,但是感知器是 ANN 和 SVM 的基础,理解了感知器的原理,对学习ANN 和 SVM 会有帮助,所以还是值得花些时间的. 感知器可以表示为

第三节,TensorFlow 使用CNN实现手写数字识别

上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,着一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]

Tensorflow实战 手写数字识别(Tensorboard可视化)

一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打响学习Tensorflow的第一枪啦. 看本文之前,希望你已经具备机器学习和深度学习基础. 机器学习基础可以看我的系列博文: https://cuijiahua.com/blog/ml/ 深度学习基础可以看吴恩达老师的公开课: http://mooc.study.163.com/smartSpec/

手把手教你搭建caffe及手写数字识别(全程命令提示、纯小白教程)

手把手教你搭建caffe及手写数字识别 作者:七月在线课程助教团队,骁哲.小蔡.李伟.July时间:二零一六年十一月九日交流:深度学习实战交流Q群 472899334,有问题可以加此群共同交流.另探究实验背后原理,请参看此课程:11月深度学习班. 一.前言 在前面的教程中,我们搭建了tensorflow.torch,教程发布后,大家的问题少了非常多.但另一大框架caffe的问题则也不少,加之caffe也是11月深度学习班要讲的三大框架之一,因此,我们再把caffe的搭建完整走一遍,手把手且全程命

使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型

使用L2正则化和平均滑动模型的LeNet-5MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下 L2正则化 Dropout 滑动平均方法 定义模型框架与前向传播 import tensorflow as tf # 配置神经网络的参数 INPUT_NODE = 78

【PaddlePaddle系列】手写数字识别

  最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个"易学.易用"的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供了许多文档,而且还是中英双语具备,但是最关键的是报错了很难在网上找到相应的解决办法.为了明年备战百度的比赛,便开始学习以下PaddlePaddle. 1.安装 PaddlePaddle同样支持CUDA加速运算,但是如果没有NVIDIA的显卡,那就还是装CPU版本. CPU版本安装:pip