Python(8)线程、进程

线程

1.什么是线程?

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。

2.python GIL全局解释器锁(仅需了解)

无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL

这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf

3.python threading模块

threading模块建立在_thread 模块之上。thread模块以低级、原始的方式来处理和控制线程,而threading 模块通过对thread 进行二次封装,提供了更方便的 api来处理线程。

线程有两种调用方式,如下:

1)直接调用

import threading
import time
def sayhi(num): #定义每个线程要运行的函数
    print("running on number:%s" %num)
    time.sleep(3)
if __name__ == ‘__main__‘:
    t1 = threading.Thread(target=sayhi,args=(1,)) #生成一个线程实例 target=函数名 args传元组,元组中是参数
    t2 = threading.Thread(target=sayhi,args=(2,)) #生成另一个线程实例
    t1.start() #启动线程
    t2.start() #启动另一个线程
    print(t1.getName()) #获取线程名
    print(t2.getName())

2)继承调用

import threading
import time
    class MyThread(threading.Thread):
        def __init__(self,num):
            threading.Thread.__init__(self)
            self.num = num
        def run(self):#定义每个线程要运行的函数
            print("running on number:%s" %self.num)
            time.sleep(3)
if __name__ == ‘__main__‘:
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start() 

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

thread 模块提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

4.Join & Daemon

join 等待线程执行完后,其他线程再继续执行

import threading,time
def run(n,sleep_time):
    print("test...",n)
    time.sleep(sleep_time)
    print("test...done", n)
if __name__ == ‘__main__‘:
    t1 = threading.Thread(target=run,args=("t1",2))
    t2 = threading.Thread(target=run,args=("t2",3))
    # 两个同时执行,然后等待t1执行完成后,主线程和子线程再开始执行
    t1.start()
    t2.start()
    t1.join() # 等待t1
    print("main thread")
# 程序输出
# test... t1
# test... t2
# test...done t1
# main thread
# test...done t2

Daemon 守护进程

t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

import threading,time
def run(n):
    print(‘[%s]------running----\n‘ % n)
    time.sleep(2)
    print(‘--done--‘)
def main():
    for i in range(5):
        t = threading.Thread(target=run, args=[i, ])
        t.start()
        t.join(1)
        print(‘starting thread‘, t.getName())
        m = threading.Thread(target=main, args=[])
        m.setDaemon(True) # 将main线程设置为Daemon线程,它做为程序主线程的守护线程,当主线程退出时,
        # m线程也会退出,由m启动的其它子线程会同时退出,不管是否执行完任务
        m.start()
        m.join(timeout=2)
        print("---main thread done----")
# 程序输出
# [0]------running----
# starting thread Thread-2
# [1]------running----
# --done--
# ---main thread done----

5.线程锁(互斥锁Mutex)

我们使用线程对数据进行操作的时候,如果多个线程同时修改某个数据,可能会出现不可预料的结果,为了保证数据的准确性,引入了锁的概念。

例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。

不加锁:

import time
import threading
def addNum():
    global num # 在每个线程中都获取这个全局变量
    print(‘--get num:‘, num)
    time.sleep(1)
    num -= 1 # 对此公共变量进行-1操作
num = 100 # 设定一个共享变量
thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)
for t in thread_list: # 等待所有线程执行完毕
    t.join()
print(‘final num:‘, num)

加锁:

import time
import threading
def addNum():
    global num # 在每个线程中都获取这个全局变量
    print(‘--get num:‘, num)
    time.sleep(1)
    lock.acquire() # 修改数据前加锁
    num -= 1 # 对此公共变量进行-1操作
    lock.release() # 修改后释放
num = 100 # 设定一个共享变量
thread_list = []
lock = threading.Lock() # 生成全局锁
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)
for t in thread_list: # 等待所有线程执行完毕
    t.join()
print(‘final num:‘, num)

GIL VS LOCK

机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 注意啦,这里的lock是用户级的lock,跟那个GIL没关系 ,具体我们通过下图来看一下+配合我现场讲给大家,就明白了。

6.递归锁

说白了就是在一个大锁中还要再包含子锁

import threading,time 

def run1():
    print("grab the first part data")
    lock.acquire()
    global num
    num += 1
    lock.release()
    return num
def run2():
    print("grab the second part data")
    lock.acquire()
    global num2
    num2 += 1
    lock.release()
    return num2
def run3():
    lock.acquire()
    res = run1()
    print(‘--------between run1 and run2-----‘)
    res2 = run2()
    lock.release()
    print(res, res2)
if __name__ == ‘__main__‘:
    num, num2 = 0, 0
    lock = threading.RLock()
    for i in range(10):
        t = threading.Thread(target=run3)
        t.start()
while threading.active_count() != 1:
    print(threading.active_count())
else:
    print(‘----all threads done---‘)
    print(num, num2)

threading.RLockthreading.Lock 的区别:

RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。

import threading
lock = threading.Lock() #Lock对象
lock.acquire()
lock.acquire() #产生了死琐。
lock.release()
lock.release()
import threading
rLock = threading.RLock() #RLock对象
rLock.acquire()
rLock.acquire() #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()

1. 多进程multiprocessing

multiprocessing包是Python中的多进程管理包,是一个跨平台版本的多进程模块。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法类似。

创建一个Process实例,可用start()方法启动。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

from multiprocessing import Process
import time
def f(name):
    time.sleep(2)
    print(‘hello‘, name)
if __name__ == ‘__main__‘:
    p = Process(target=f, args=(‘bob‘,))
    p.start()
    p.join()

写个程序,对比下主进程和子进程的ID:

from multiprocessing import Process
import os
def info(title):
    print(title)
    print(‘进程名称:‘, __name__)
    print(‘父进程ID:‘, os.getppid())
    print(‘子进程ID:‘, os.getpid())
    print("\n\n")
def f(name):
    info(‘\033[31;1mcalled from child process function f\033[0m‘)
    print(‘hello‘, name)
if __name__ == ‘__main__‘:
    info(‘\033[32;1mmain process line\033[0m‘)
    p = Process(target=f, args=(‘bob‘,))
    p.start()

2. 进程间通信

不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以使用Queue、Pipe、Manager,其中:

1)Queue \ Pipe 只是实现进程间数据的传递;

2)Manager 实现了进程间数据的共享,即多个进程可以修改同一份数据;

2.1 Queue

Queue允许多个进程放入,多个进程从队列取出对象,先进先出。(使用方法跟threading里的queue差不多)

from multiprocessing import Process,Queue
def f(qq):
    qq.put([42,None,"hello"])
    qq.put([43,None,"HI"])
if __name__ == ‘__main__‘:
    q = Queue()
    p = Process(target=f,args=(q,))
    p.start()
    print(q.get())
    print(q.get())
    p.join()

2.2 Pipe

Pipe也是先进先出

from multiprocessing import Process, Pipe
def f(conn):
    conn.send([42, None, ‘儿子发送的消息‘])
    conn.send([42, None, ‘儿子又发消息啦‘])
    print("接收父亲的消息:",conn.recv())
    conn.close()
if __name__ == ‘__main__‘:
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv()) # prints "[42, None, ‘hello‘]"
    print(parent_conn.recv()) # prints "[42, None, ‘hello‘]"
    parent_conn.send("回家吃饭!") # prints "[42, None, ‘hello‘]"
    p.join()

2.3 Manager

Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。

from multiprocessing import Process,Manager
import os
def f(d,l):
    d[os.getpid()] = os.getpid()
    l.append(os.getpid())
    print(l)
if __name__ == "__main__":
    with Manager() as manager:
    d = manager.dict()#生成一个字典,可在多个进程间共享和传递
    l = manager.list(range(5))#生成一个列表,可在多个进程间实现共享和传递
    p_list = []
for i in range(10):
    p = Process(target=f,args=(d,l))
    p.start()
    p_list.append(p)
for res in p_list:#等待结果
    res.join()

3. 进程池

进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。

进程池有两种方法:

1)串行:apply

2)并行:apply_async

from multiprocessing import Process,Pool
import time
import os
def Foo(i):
    time.sleep(2)
    print("in process",os.getpid())
    return i+100
def Bar(arg):
    ‘‘‘回调函数‘‘‘
    print("-->>exec done:",arg,os.getpid())
if __name__ == "__main__":
    pool = Pool(processes=3)#允许进程池同时放入3个进程
    print("主进程",os.getpid())
for i in range(10):
    pool.apply_async(func=Foo,args=(i,),callback=Bar)
    print(‘end‘)
    pool.close()
    pool.join()#进程池中进程执行完毕后在关闭;如果注释则程序直接关闭

使用回调函数的目的是:在父进程中执行可以提高效率;(比如连接数据库,写回调函数的话,父进程连接一次数据库即可;如果使用子进程,则需要连接多次)

4. 其他(lock)

lock:屏幕上打印的锁,防止打印显示混乱

from multiprocessing import Process, Lock
def f(l, i):
    #上锁
    l.acquire()
try:
    print(‘hello world‘, i)
finally:
#解锁
    l.release()
    #因为屏幕是共享的,定义锁的目的是打印的信息不换乱,而不是顺序不会乱
if __name__ == ‘__main__‘:
#定义锁
    lock = Lock()
for num in range(10):
    Process(target=f, args=(lock, num)).start()
时间: 2024-10-25 14:57:41

Python(8)线程、进程的相关文章

Python(线程进程2)

二 threading模块 ''' 进程包括多个线程,线程之间切换的开销远小于进程之间切换的开销 线程一定是寄托于进程而存在的 进程:最小的资源管理单元 线程:最小的执行单元 python锁的机制,一个进程一把锁,一个进程一个时间只能取出一个线程,所以无法实现真正的进程中的线程并行 I/O密集型任务 计算密集型任务 ''' 2.1 线程对象的创建 2.1.1 Thread类直接创建 import threading import time def countNum(n): # 定义某个线程要运行

Python的线程&进程&协程[0] -> 基本概念

基本概念 / Basic Concept 0 简介与动机 / Why Multi-Thread/Multi-Process/Coroutine 在多线程(multithreaded, MT)编程出现之前,计算机程序的执行是由单个步骤序列组成的,该序列在主机的CPU中按照同步顺序执行.即无论任务多少,是否包含子任务,都要按照顺序方式进行. 然而,假定子任务之间相互独立,没有因果关系,若能使这些独立的任务同时运行,则这种并行处理方式可以显著提高整个任务的性能,这便是多线程编程. 而对于Python而

Python的线程&进程&协程[0] -> 线程 -> 多线程锁的使用

锁与信号量 目录 添加线程锁 锁的本质 互斥锁与可重入锁 死锁的产生 锁的上下文管理 信号量与有界信号量 1 添加线程锁 由于多线程对资源的抢占顺序不同,可能会产生冲突,通过添加线程锁来对共有资源进行控制. 1 import atexit 2 from random import randrange 3 from threading import Thread, Lock, current_thread # or currentThread 4 from time import ctime, s

Python的线程&进程&协程[0] -> 线程 -> 多线程的建立与使用

常用的多线程功能实现 目录 生成线程的三种方法 单线程与多线程对比 守护线程的设置 1 生成线程的三种方法 三种方式分别为: 创建一个Thread实例,传给它一个函数 创建一个Thread实例,传给它一个可调用的类实例 派生Thread的子类,并创建子类的实例 # There are three ways to create a thread # The first is create a thread instance, and pass a function # The second one

Python的线程&进程&协程[1] -> 线程 -> 多线程的控制方式

多线程的控制方式 目录 唤醒单个线程等待 唤醒多个线程等待 条件函数等待 事件触发标志 函数延迟启动 设置线程障碍 1 唤醒单个线程等待 Condition类相当于一把高级的锁,可以进行一些复杂的线程同步控制.一般Condition内部都有一把内置的锁对象(默认为RLock),对于Condition的使用主要有以下步骤: 建立两个线程对象,及Condition对象; 线程1首先获取Condition的锁权限,acquire(); 线程1执行需要完成的任务后,调用等待wait(),此时,线程1会阻

Python的线程&进程&协程[2] -> 进程 -> 多进程的基本使用

多进程的基本使用 1 subprocess 常用函数示例 首先定义一个子进程调用的程序,用于打印一个输出语句,并获取命令行参数 1 import sys 2 print('Called_Function.py called, Hello world.') 3 try: 4 print('Got para', sys.argv[1:]) 5 except: 6 pass 再定义主函数,即父进程,分别测试 run() / call() / check_call() / getstatusoutput

Python 中的进程、线程、协程、同步、异步、回调

进程和线程究竟是什么东西?传统网络服务模型是如何工作的?协程和线程的关系和区别有哪些?IO过程在什么时间发生? 在刚刚结束的 PyCon2014 上海站,来自七牛云存储的 Python 高级工程师许智翔带来了关于 Python 的分享<Python中的进程.线程.协程.同步.异步.回调>. 一.上下文切换技术 简述 在进一步之前,让我们先回顾一下各种上下文切换技术. 不过首先说明一点术语.当我们说"上下文"的时候,指的是程序在执行中的一个状态.通常我们会用调用栈来表示这个状

python中的进程、线程(threading、multiprocessing、Queue、subprocess)

Python中的进程与线程 学习知识,我们不但要知其然,还是知其所以然.你做到了你就比别人NB. 我们先了解一下什么是进程和线程. 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专

Python之线程与进程

1.程序 程序指的是指令的集合:程序不能单独的运行,必须将程序装载在内存中,系统给它分配资源才可以运行. 程序是进程动态运行的静态描述文本 2.进程 进程指的是程序在数据集中一次动态运行的过程: 3.线程 线程进程的最小执行单位,真正在CPU运行的是线程 4.进程与线程的关系 一个线程只能在一个进程里面,一个进程可以包含多个线程: 进程是资源管理单位(容器)  线程是最小执行单位 5.并行与并发 并行:指的是同时处理多个任务(多个线程被不同的CPU执行) 并发:指的是交替处理多个任务(多个线程被

Python:线程、进程与协程(4)——multiprocessing模块(1)

multiprocessing模块是Python提供的用于多进程开发的包,multiprocessing包提供本地和远程两种并发,通过使用子进程而非线程有效地回避了全局解释器锁. (一)创建进程Process 类 创建进程的类,其源码在multiprocessing包的process.py里,有兴趣的可以对照着源码边理解边学习.它的用法同threading.Thread差不多,从它的类定义上就可以看的出来,如下: class Process(object):     '''     Proces