PAT (Basic Level) Practise (中文)-卡拉兹(Callatz)猜想

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:
5

#include <stdio.h>

main(){
	int number = 0;
	int count = 0;
	scanf("%d",&number);
	while(number != 1){
		if(number%2 == 1){
			number = (3*number + 1)/2;
		} else {
			number = number/2;
		}
		count++;
	}
	printf("%d",count);
}

  

时间: 2025-01-04 09:13:25

PAT (Basic Level) Practise (中文)-卡拉兹(Callatz)猜想的相关文章

PAT (Basic Level) Practise:1007. 素数对猜想

[题目链接] 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数.“素数对猜想”认为“存在无穷多对相邻且差为2的素数”. 现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数. 输入格式:每个测试输入包含1个测试用例,给出正整数N. 输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数. 输入样例: 20 输出样例: 4 提交代码: 1 #include <stdio.h>

PAT (Basic Level) Practise (中文) 1005

1005. 继续(3n+1)猜想 (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重

PAT (Basic Level) Practise (中文)1004. 成绩排名 (20)

读入n名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式:每个测试输入包含1个测试用例,格式为 第1行:正整数n 第2行:第1个学生的姓名 学号 成绩 第3行:第2个学生的姓名 学号 成绩 ... ... ... 第n+1行:第n个学生的姓名 学号 成绩 其中姓名和学号均为不超过10个字符的字符串,成绩为0到100之间的一个整数,这里保证在一组测试用例中没有两个学生的成绩是相同的. 输出格式:对每个测试用例输出2行,第1行是成绩最高学生的姓名和学号,第2行是成绩最低

PAT (Basic Level) Practise 1001. 害死人不偿命的(3n+1)猜想

1001. 害死人不偿命的(3n+1)猜想 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证

PAT (Basic Level) Practise 1005. 继续(3n+1)猜想

1005. 继续(3n+1)猜想 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因

PAT (Basic Level) Practise (中文)1001

1001. 害死人不偿命的(3n+1)猜想 (15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业

PAT (Basic Level) Practise:1005. 继续(3n+1)猜想

[题目链接] 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这4个数已经在验证3的时候遇到过了,我们称5.8.4.2是被3“覆盖”的数.我们称一个数列中的某个数n为“关键数”,如果n不能被数列中的其他数字所覆盖.

PAT (Basic Level) Practise:1001. 害死人不偿命的(3n+1)猜想

[题目链接] 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展…… 我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n

PAT (Basic Level) Practise水题1~10

1001. 害死人不偿命的(3n+1)猜想 (15) 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展-- 我们今天的题目不是证明卡拉兹猜想,