tarjian强联通分量(模板)

来,水水模板吧。。。。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 10000
using namespace std;
int x,y,n,m,t,tot,sum,top,time;
int head[N],col[N],stack[N],dfn[N],low[N],a[N][N];
bool vis[N];
struct Edge
{
    int from,next,to;
 }edge[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return f*x;
}
int tarjian(int now)
{
    t=0;
    dfn[now]=low[now]=++time;//初始每一个点的low值dfn等于它的时间戳
    stack[++top]=now; vis[now]=true;//将该点入栈,标记为在栈中
    for(int i=head[now];i;i=edge[i].next)//更新于他相连的点的low值
    {
        x=edge[i].to;
        if(vis[x]) low[i]=min(dfn[x],low[i]);//如果该点已经在栈中
        else if(!dfn[x])
        {
            tarjian(x);
            low[i]=min(low[x],low[i]);//从该点继续拓展
        }
    }
    if(low[now]==dfn[now])//说明以这个点结束强连通分量
    {
        sum++;// 强连通分量的个数加一
        col[now]=sum;//将该点放在她所属的强连通分量了
        for(;stack[top]!=now;top--)
        {
            col[stack[top]]=sum;
            vis[stack[top]]=false;
        }
        vis[now]=false;
        top--;
     }
}
int main()
{
    n=read(),m=read();
    for(int i=1;i<=m;i++)
     {
         x=read();y=read();
         add(x,y);
     }
    for(int i=1;i<=n;i++)
      if(!dfn[i]) tarjian(i);
    printf("%d",sum);
    return 0;
}
时间: 2024-11-03 05:29:54

tarjian强联通分量(模板)的相关文章

POJ 2186 Popular cows(Kosaraju+强联通分量模板)

题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为牛C是红人,那么牛A也认为牛C是红人.求被其他所有牛认为是红牛的牛的总数. 解题思路:把所有牛看成顶点,把有序对(A,B)看成从A到B的有向边,那么题目就变成了求所有顶点都可到达的顶点的总数.我们可以得到一个结论,如果一个强连通分量里有一头牛被认为是红人,那么该强联通分量里的所有牛都是红人,这显然是

tarjan求强联通分量 模板

1 void tarjan(int u) 2 { 3 dfn[u]=low[u]=++dfs_clock; 4 stack_push(u); 5 6 for (int c=head[u];c;c=nxt[c]) 7 { 8 int v=to[c]; 9 if (!dfn[v]) 10 { 11 tarjan(v); 12 low[u]=min(low[u],low[v]); 13 } 14 else if (!scc[v]) 15 low[u]=min(low[u],dfn[v]); 16 }

51nod 1076 2条不相交的路径 无向图强联通分量 trajan算法

1076 2条不相交的路径 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给出一个无向图G的顶点V和边E.进行Q次查询,查询从G的某个顶点V[s]到另一个顶点V[t],是否存在2条不相交的路径.(两条路径不经过相同的边) (注,无向图中不存在重边,也就是说确定起点和终点,他们之间最多只有1条路) Input 第1行:2个数M N,中间用空格分开,M是顶点的数量,N是边的数量.(2 <= M <= 25000, 1 <= N <=

Light OJ 1034 - Hit the Light Switches(强联通分量)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1034 题目大意:有n盏灯,有m个关系, 关系a,b表示如果a灯开关打开那么b灯也会亮起来, 现在求至少需要打开多少开关使所有灯都亮. 题目思路:先由强联通分量缩点, 得到DAG图, 然后根据DAG图,求出有多少入度为0的点, 即为所求. 代码如下: #include<bits/stdc++.h> using namespace std; const int N = 1000

[BZOJ1051] [HAOI2006] 受欢迎的牛 (强联通分量)

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可 能出现多个A,B) Output 一个数,即有多少头牛被所有的牛认为是受欢迎的. Sample Input 3

【小结】强联通分量分解

强联通分量 在一个有向图的顶点子集S中,对?(u,v),如果都能找到一条从u到v的路径,那么就称S是强联通的.如果向S中加入任何一个其他顶点后S都不再是强联通的,就称S时原图的一个强联通分量. 显然,如果把所有的强联通分量都缩点,原图将变成一个DAG SCC的求解可通过两次dfs实现,第一次在原图中后续遍历,标号:第二遍将所有边反向后,从编号最大的点开始遍历,每次都可得到一个SCC. #include <cstdio> #include <cstring> #include <

[CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1的都当作1,那么a矩阵可表示一个有向图的走一次的连通性,则a^k表示有向图走K次的连通性.既然要求最后都没0,即走了K次后,每个点都能互通,这也说明这个图必然是只有一个强联通分量.于是判断k的存在有无,也就是判断a矩阵表示的有向图是不是只有一个强联通分量.

爆零后的感受外加一道强联通分量HDU 4635的题解

今天又爆零了,又是又,怎么又是又,爆零爆多了,又也就经常挂嘴边了,看到这句话,你一定很想说一句"",弱菜被骂傻,也很正常啦. 如果你不开心,可以考虑往下看. 翻到E(HDU 4635 Strongly connected)题,这么短的题目,肯定要先看啦.然后D(LightOJ 1229),然后C(ZOJ 2243),然后F(HDU 4711),然后B(CodeForces 385D),然后看A(HDU 3889)好吧,我承认,A题看了一眼就不看了,B题一看是线段什么有点几何的味道就果断

POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)

题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认为b牛“受欢迎”, b牛认为c牛“受欢迎”, 那么a牛也认为c牛“受欢迎”. 现在想知道有多少头牛受除他本身外其他所有牛的欢迎? 解题思路:如果有两头或者多头牛受除他本身外其他所有牛的欢迎, 那么在这两头或者多头牛之中, 任意一头牛也受两头或者多头牛中别的牛的欢迎, 即这两头或者多头牛同属于一个强联