Quartz 并发/单线程

Quartz 并发/单线程

Quartz定时任务默认都是并发执行的,不会等待上一次任务执行完毕,只要间隔时间到就会执行, 如果定时任执行太长,会长时间占用资源,导致其它任务堵塞。
1.在Spring中这时需要设置concurrent的值为false, 禁止并发执行。

 <property name="concurrent" value="true" />

2.当不使用spring的时候就需要在Job的实现类上加@DisallowConcurrentExecution的注释
@DisallowConcurrentExecution 禁止并发执行多个相同定义的JobDetail, 这个注解是加在Job类上的, 但意思并不是不能同时执行多个Job, 而是不能并发执行同一个Job Definition(由JobDetail定义), 但是可以同时执行多个不同的JobDetail, 举例说明,我们有一个Job类,叫做SayHelloJob, 并在这个Job上加了这个注解, 然后在这个Job上定义了很多个JobDetail, 如sayHelloToJoeJobDetail, sayHelloToMikeJobDetail, 那么当scheduler启动时, 不会并发执行多个sayHelloToJoeJobDetail或者sayHelloToMikeJobDetail, 但可以同时执行sayHelloToJoeJobDetail跟sayHelloToMikeJobDetail

@PersistJobDataAfterExecution 同样, 也是加在Job上,表示当正常执行完Job后, JobDataMap中的数据应该被改动, 以被下一次调用时用。当使用@PersistJobDataAfterExecution 注解时, 为了避免并发时, 存储数据造成混乱, 强烈建议把@DisallowConcurrentExecution注解也加上。

@DisallowConcurrentExecution

此标记用在实现Job的类上面,意思是不允许并发执行,按照我之前的理解是 不允许调度框架在同一时刻调用Job类,后来经过测试发现并不是这样,而是Job(任务)的执行时间[比如需要10秒]大于任务的时间间隔[Interval(5秒)],那么默认情况下,调度框架为了能让 任务按照我们预定的时间间隔执行,会马上启用新的线程执行任务。否则的话会等待任务执行完毕以后 再重新执行!(这样会导致任务的执行不是按照我们预先定义的时间间隔执行)

测试代码,这是官方提供的例子。设定的时间间隔为3秒,但job执行时间是5秒,设置@DisallowConcurrentExecution以后程序会等任务执行完毕以后再去执行,否则会在3秒时再启用新的线程执行

org.quartz.threadPool.threadCount = 5 这里配置框架的线程池中线程的数量,要多配置几个,否则@DisallowConcurrentExecution不起作用
org.quartz.scheduler.instanceName = MyScheduler
org.quartz.threadPool.threadCount = 5
org.quartz.jobStore.class =org.quartz.simpl.RAMJobStore
/*
 * Copyright 2005 - 2009 Terracotta, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy
 * of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 */

package org.quartz.examples.example5;

import java.util.Date;

import org.quartz.DisallowConcurrentExecution;
import org.quartz.Job;
import org.quartz.JobDataMap;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.quartz.PersistJobDataAfterExecution;

/**
 * <p> A dumb implementation of Job, for unit testing purposes. </p>
 *
 * @author James House
 */
@PersistJobDataAfterExecution
@DisallowConcurrentExecution
public class StatefulDumbJob implements Job {

    /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     *
     * Constants.
     *
     * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

    public static final String NUM_EXECUTIONS = "NumExecutions";

    public static final String EXECUTION_DELAY = "ExecutionDelay";

    /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     *
     * Constructors.
     *
     * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

    public StatefulDumbJob() {
    }

    /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     *
     * Interface.
     *
     * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

    /**
     * <p> Called by the <code>{@link org.quartz.Scheduler}</code> when a <code>{@link org.quartz.Trigger}</code> fires that is associated with the <code>Job</code>. </p>
     *
     * @throws JobExecutionException if there is an exception while executing the job.
     */
    public void execute(JobExecutionContext context) throws JobExecutionException {
        System.err.println("---" + context.getJobDetail().getKey() + " executing.[" + new Date() + "]");

        JobDataMap map = context.getJobDetail().getJobDataMap();

        int executeCount = 0;
        if (map.containsKey(NUM_EXECUTIONS)) {
            executeCount = map.getInt(NUM_EXECUTIONS);
        }

        executeCount++;

        map.put(NUM_EXECUTIONS, executeCount);

        long delay = 5000l;
        if (map.containsKey(EXECUTION_DELAY)) {
            delay = map.getLong(EXECUTION_DELAY);
        }

        try {
            Thread.sleep(delay);
        } catch (Exception ignore) {
        }

        System.err.println(" -" + context.getJobDetail().getKey() + " complete (" + executeCount + ").");

    }

}
/*
 * Copyright 2005 - 2009 Terracotta, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy
 * of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 */

package org.quartz.examples.example5;

import static org.quartz.JobBuilder.newJob;
import static org.quartz.SimpleScheduleBuilder.simpleSchedule;
import static org.quartz.TriggerBuilder.newTrigger;
import static org.quartz.DateBuilder.*;

import java.util.Date;

import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerFactory;
import org.quartz.SchedulerMetaData;
import org.quartz.SimpleTrigger;
import org.quartz.impl.StdSchedulerFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Demonstrates the behavior of <code>StatefulJob</code>s, as well as how misfire instructions affect the firings of triggers of <code>StatefulJob</code> s - when the jobs take longer to execute that the frequency of the trigger‘s repitition.
 *
 * <p> While the example is running, you should note that there are two triggers with identical schedules, firing identical jobs. The triggers "want" to fire every 3 seconds, but the jobs take 10 seconds to execute. Therefore, by the time the jobs complete their execution, the triggers have already "misfired" (unless the scheduler‘s "misfire threshold" has been set to more than 7 seconds). You should see that one of the jobs has its misfire instruction set to <code>SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT</code>, which causes it to fire immediately, when the misfire is detected. The other trigger uses the default "smart policy" misfire instruction, which causes the trigger to advance to its next fire time (skipping those that it has missed) - so that it does not refire immediately, but rather at the next scheduled time. </p>
 *
 * @author <a href="mailto:[email protected]">Chris Bonham</a>
 */
public class MisfireExample {
    public void run() throws Exception {
        Logger log = LoggerFactory.getLogger(MisfireExample.class);

        log.info("------- Initializing -------------------");

        // First we must get a reference to a scheduler
        SchedulerFactory sf = new StdSchedulerFactory();
        Scheduler sched = sf.getScheduler();

        log.info("------- Initialization Complete -----------");

        log.info("------- Scheduling Jobs -----------");

        // jobs can be scheduled before start() has been called

        // get a "nice round" time a few seconds in the future...
        Date startTime = nextGivenSecondDate(null, 15);

        // statefulJob1 will run every three seconds
        // (but it will delay for ten seconds)
        JobDetail job = newJob(StatefulDumbJob.class).withIdentity("statefulJob1", "group1").usingJobData(StatefulDumbJob.EXECUTION_DELAY, 10000L).build();

        SimpleTrigger trigger = newTrigger().withIdentity("trigger1", "group1").startAt(startTime).withSchedule(simpleSchedule().withIntervalInSeconds(3).repeatForever()).build();

        Date ft = sched.scheduleJob(job, trigger);
        log.info(job.getKey() + " will run at: " + ft + " and repeat: " + trigger.getRepeatCount() + " times, every " + trigger.getRepeatInterval() / 1000 + " seconds");

        log.info("------- Starting Scheduler ----------------");

        // jobs don‘t start firing until start() has been called...
        sched.start();

        log.info("------- Started Scheduler -----------------");

        try {
            // sleep for ten minutes for triggers to file....
            Thread.sleep(600L * 1000L);
        } catch (Exception e) {
        }

        log.info("------- Shutting Down ---------------------");

        sched.shutdown(true);

        log.info("------- Shutdown Complete -----------------");

        SchedulerMetaData metaData = sched.getMetaData();
        log.info("Executed " + metaData.getNumberOfJobsExecuted() + " jobs.");
    }

    public static void main(String[] args) throws Exception {

        MisfireExample example = new MisfireExample();
        example.run();
    }

}

@PersistJobDataAfterExecution

此标记说明在执行完Job的execution方法后保存JobDataMap当中固定数据,在默认情况下 也就是没有设置 @PersistJobDataAfterExecution的时候 每个job都拥有独立JobDataMap

否则改任务在重复执行的时候具有相同的JobDataMap

/*
 * Copyright 2005 - 2009 Terracotta, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy
 * of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 */

package com.quartz.demo.example6;

import java.util.Date;

import org.quartz.DisallowConcurrentExecution;
import org.quartz.Job;
import org.quartz.JobDataMap;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.quartz.JobKey;
import org.quartz.PersistJobDataAfterExecution;

@PersistJobDataAfterExecution
@DisallowConcurrentExecution
public class BadJob1 implements Job {

    public BadJob1() {
    }

    public void execute(JobExecutionContext context) throws JobExecutionException {
        JobKey jobKey = context.getJobDetail().getKey();
        JobDataMap dataMap = context.getJobDetail().getJobDataMap();

        int denominator = dataMap.getInt("denominator");
        System.out.println("---" + jobKey + " executing at " + new Date() + " with denominator " + denominator);

        denominator++;
        dataMap.put("denominator", denominator);
    }

}
/*
 * Copyright 2005 - 2009 Terracotta, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy
 * of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 */

package com.quartz.demo.example6;

import static org.quartz.JobBuilder.newJob;
import static org.quartz.SimpleScheduleBuilder.simpleSchedule;
import static org.quartz.TriggerBuilder.newTrigger;
import static org.quartz.DateBuilder.*;

import java.util.Date;

import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleTrigger;
import org.quartz.impl.StdSchedulerFactory;

public class JobExceptionExample {

    public void run() throws Exception {

        // First we must get a reference to a scheduler
        SchedulerFactory sf = new StdSchedulerFactory();
        Scheduler sched = sf.getScheduler();

        // jobs can be scheduled before start() has been called

        // get a "nice round" time a few seconds in the future...
        Date startTime = nextGivenSecondDate(null, 2);

        JobDetail job = newJob(BadJob1.class).withIdentity("badJob1", "group1").usingJobData("denominator", "0").build();

        SimpleTrigger trigger = newTrigger().withIdentity("trigger1", "group1").startAt(startTime).withSchedule(simpleSchedule().withIntervalInSeconds(2).repeatForever()).build();

        Date ft = sched.scheduleJob(job, trigger);

        //任务每2秒执行一次 那么在BadJob1的方法中拿到的JobDataMap的数据是共享的.
        //这里要注意一个情况: 就是JobDataMap的数据共享只针对一个BadJob1任务。
        //如果在下面在新增加一个任务 那么他们之间是不共享的 比如下面

        JobDetail job2 = newJob(BadJob1.class).withIdentity("badJob1", "group1").usingJobData("denominator", "0").build();

        SimpleTrigger trigger2 = newTrigger().withIdentity("trigger1", "group1").startAt(startTime).withSchedule(simpleSchedule().withIntervalInSeconds(2).repeatForever()).build();

        //这个job2与job执行的JobDataMap不共享
        sched.scheduleJob(job2, trigger2);

        sched.start();

        try {
            // sleep for 30 seconds
            Thread.sleep(30L * 1000L);
        } catch (Exception e) {
        }

        sched.shutdown(false);
    }

    public static void main(String[] args) throws Exception {

        JobExceptionExample example = new JobExceptionExample();
        example.run();
    }

}
时间: 2024-10-07 12:16:57

Quartz 并发/单线程的相关文章

python并发学习总结

目录 一.理解操作系统 二.任务类型 三.Socket模块 四.一个简单的C/S程序 五.使用阻塞IO实现并发 方案一:阻塞IO+多进程 方案二:阻塞IO+多线程 阻塞IO模型的思考和总结 六.使用非阻塞IO实现并发 方案一:非阻塞IO+Try+轮询 方案二:非阻塞IO+Select代理轮询 select函数接口说明 关于轮询效率的思考 方案三:非阻塞IO+Selectors+回调函数+事件循环(待后续补充) 方案四:非阻塞IO+协程+回调函数+事件循环(待后续补充) 非阻塞IO的思考和总结(待

服务器开发之线程结构

线程结构相当于服务器程序的灵魂,一个好的服务器程序必须线程结构清析且线程利用率高.下面主要以伪代码的形式列举一些常用的线程结构. 1 单业务处理线程结构 int main() { Init(); while (queue.GetMessage(timeout, message)) // 这里的队列要支持多个线程写,一个线程读 { DispatchMessage(message); DetectTimer(); // 如果需要定时器的话 } DeInit(); return 0; } window

协程相关

---恢复内容开始--- 思想 主要的思想:如果一个变量自己有某种方法,而你想在不改变调用方式的前提下,希望可以点出它本身不存在的方法,就要想到用 类 封装的思想 , 将这个变量,改变为一个类的对象,在类中增加你需要的方法例如: # lst1= [1,2,3,4]#有append 的功能# lst2= [1,2,3,4]#有append 的功能# lst3= [1,2,3,4]#有append 的功能# lst4= [1,2,3,4]#有append 的功能# l = [lst1,lst2,ls

异步回调,事件,线程池与协程

在发起一个异步任务时,指定一个函数任务完成后调用函数 为什么需要异步 在使用线程池或进程池提交任务时想要任务的结果然后将结果处理,调用shudown 或者result会阻塞 影响效率,这样的话采用异步调用 比如result本来是用水壶烧水烧开了拿走,烧下一个 用shutdown可以将水壶一起烧但是一个一个拿走 call_done_back是一起烧,每个好了会叫你拿走做其他事 . 1.使用进程池时,回调函数都是主进程中执行执行 2. 使用线程池时,回调函数的执行线程是不确定的,哪个线程空闲就交给哪

迭代器、生成器以及利用生成器实现单线程的异步并发

1.迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素.迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁.这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件 特点: 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容 不能随机访问集合

2017/9/5的学习内容___通过yield实现在单线程的情况下实现并发运算的效果

之前的学习内容,由于没有申请开通博客,就没有分享,今天想分享一下学习内容:通过yield实现在单线程的情况下实现并发运算的效果 采用的是经典的生产消费者模型 定义了两个函数 Consumer与Producer 关于生成器标志yield : 如果用__next__访问,只是单纯调用yield :如果是send访问,不仅可以访问yield,也可以给yield赋值! 需求:一个人造包子:两个人吃包子: 代码如下: 1 # -*- coding:utf-8 -*- 2 # Author : 何子辰 3

QT 信号槽 异步事件驱动 单线程 多并发

利用好Qt 模块的异步信号槽,单线程同样可是实现很强悍的的并发能力.应付正常的功能是足够的. 需要注意的是:该模式本质上为 单线程 事件驱动异步模式,所以需要做的事优化你的业务代码构架以应付性能与并发压力需求. (当然能够实现异步事件驱动,在Qt模块内部还是启动了更多的子服务线,但在用户代码层面确实单线程模式). 案例场景: 客户端程序,连接多服务端,接收服务端的上传数据. 20个TCP服务端启动.客户端APP逐个建立连接: 单个服务端上传吞吐:一个PDU 大小: 512*2*20字节    上

单线程、高并发的运行时环境

浅谈Node.js单线程模型 Node.js采用 事件驱动 和 异步I/O 的方式,实现了一个单线程.高并发的运行时环境,而单线程就意味着同一时间只能做一件事,那么Node.js如何利用单线程来实现高并发和异步I/O?本文将围绕这个问题来探讨Node.js的单线程模型: 1.高并发 一般来说,高并发的解决方案就是多线程模型,服务器为每个客户端请求分配一个线程,使用同步I/O,系统通过线程切换来弥补同步I/O调用的时间开销,比如Apache就是这种策略,由于I/O一般都是耗时操作,因此这种策略很难

【Python】迭代器、生成器、yield单线程异步并发实现详解

转自http://blog.itpub.net/29018063/viewspace-2079767 大家在学习python开发时可能经常对迭代器.生成器.yield关键字用法有所疑惑,在这篇文章将从理论+程序调试验证的方式详细讲解这部分知识,话不多说,直接进入主题. 一.迭代器(Iterater):     首先介绍迭代器,迭代器是访问集合元素的一种方式,迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.是不是觉得跟for循环很像?但是迭代器有几个特性需记住:    1.访问者