B-树,B+树,B*树详解

B-树

B-树是一种多路搜索树(并不一定是二叉的)

1970年,R.Bayer和E.mccreight提出了一种适用于外查找的树,它是一种平衡的多叉树,称为B树(或B-树、B_树)。

一棵m阶B树(balanced tree of order m)是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:

1、根结点至少有两个子女;

2、每个非根节点所包含的关键字个数 j 满足:┌m/2┐ - 1 <= j <= m - 1;

3、除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:┌m/2┐ <= k <= m ;

4、所有的叶子结点都位于同一层。

特点:

是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的

子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果

命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为

空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

B+树

B+ 树是一种树数据结构,是一个n叉树,每个节点通常有多个孩子,一棵B+树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。

用途:

B+ 树通常用于数据库和操作系统的文件系统中。NTFS, ReiserFS, NSS, XFS, JFS, ReFS 和BFS等文件系统都在使用B+树作为元数据索引。B+ 树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+ 树元素自底向上插入。

B+树的定义

B+树是应文件系统所需而出的一种B-树的变型树。一棵m阶的B+树和m阶的B-树的差异在于:

1.有n棵子树的结点中含有n个关键字,每个关键字不保存数据,只用来索引,所有数据都保存在叶子节点。

2.所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。

3.所有的非终端结点可以看成是索引部分,结点中仅含其子树(根结点)中的最大(或最小)关键字。 
通常在B+树上有两个头指针,一个指向根结点,一个指向关键字最小的叶子结点。

B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树

(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

 
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好

是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储

(关键字)数据的数据层;

4.更适合文件索引系统;

B*树:

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3

(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据

复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父

结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分

数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字

(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之

间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结:

B-树:

多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键

字范围的子结点;

所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:

在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点

中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:

在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率

从1/2提高到2/3;

参考: 
http://baike.baidu.com/view/2228473.htm 
http://baike.baidu.com/subview/1168762/1168762.htm 
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html

时间: 2024-10-11 18:12:18

B-树,B+树,B*树详解的相关文章

哈夫曼树(一)之 C语言详解

本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请帮忙指出! 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman

数据结构&amp;&amp;AVL树原理、插入操作详解及实现

1.基本概念 AVL树的复杂程度真是比二叉搜索树高了整整一个数量级--它的原理并不难弄懂,但要把它用代码实现出来还真的有点费脑筋.下面我们来看看: 2.AVL树是什么? AVL树本质上还是一棵二叉搜索树(因此读者可以看到我后面的代码是继承自二叉搜索树的),它的特点是: 1. 本身首先是一棵二叉搜索树. 2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1. 例如: 5              5 / \            / \ 2   6          2  

Linux 目录详解 树状目录结构图

1.树状目录结构图 2./目录 目录 描述 / 第一层次结构的根.整个文件系统层次结构的根目录. /bin/ 需要在单用户模式可用的必要命令(可执行文件):面向所有用户,例如:cat.ls.cp,和/usr/bin类似. /boot/ 引导程序文件,例如:kernel.initrd:时常是一个单独的分区[6] /dev/ 必要设备, 例如:, /dev/null. /etc/ 特定主机,系统范围内的配置文件. 关于这个名称目前有争议.在贝尔实验室关于UNIX实现文档的早期版本中,/etc 被称为

Cocos2d之Node类详解之节点树(二)

一.声明 本文属于笔者原创,允许读者转载和分享,只要注明文章来源即可. 笔者使用cocos2d框架的cocos2d-x-3.3rc0版本的源代码做分析.这篇文章承接上篇<Cocos2d之Node类详解之节点树(一)>. 二.简介 节点 一个Node对象. 节点树 上篇文章介绍到,Node类有一个成员变量 Vector<Node*> _children,这是一个保存所有子节点的数组,因为Node类采用遍历树的方式获取子节点进行渲染,所以我管这两个东西的结合叫节点树. 三.源码详解 &

一维 + 二维树状数组 + 单点更新 + 区间更新 详解

树状数组详解: 假设一维数组为A[i](i=1,2,...n),则与它对应的树状数组C[i](i=1,2,...n)是这样定义的: C1 = A1 C2 = A1 + A2 C3 = A3 C4 = A1 + A2 + A3 + A4 C5 = A5 C6 = A5 + A6 ................. C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 ................ 如图可知: 为奇数的时候他是代表他本身,而为偶数的时候则是代表着自

Cocos2d之Node类详解之节点树(一)

一.声明 笔者分析的是用C++语言实现.版本号为cocos2d-x-3.3rc0的cocos2d框架的源代码.本文为笔者原创,允许读者分享和转载,只要读者注明文章来源即可. 二.简介 Node对象时场景图的基本元素,并且场景图的基本元素必须是Node对象和Node的子类对象.常见的Node类的子类有:Scene.Layer.Sprite.Menu和Label类. Node类主要实现几个特性: Node对象的 addChild(Node *child).getChildByTag(int tag)

BIT 树状数组 详解 及 例题

(一)树状数组的概念 如果给定一个数组,要你求里面所有数的和,一般都会想到累加.但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了.所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多.下面就讲一下什么是树状数组: 一般讲到树状数组都会少不了下面这个图: 下面来分析一下上面那个图看能得出什么规律: 据图可知:c1=a1,c2=a1+a2,c3=a3,c4

哈夫曼树(三)之 Java详解

前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这

《ACM/ICPC 算法训练教程》读书笔记 之 数据结构(线段树详解)

依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不错的. 线段树简介 这是一种二叉搜索树,类似于区间树,是一种描述线段的树形数据结构,也是ACMer必学的一种数据结构,主要用于查询对一段数据的处理和存储查询,对时间度的优化也是较为明显的,优化后的时间复杂为O(logN).此外,线段树还可以拓展为点树,ZWK线段树等等,与此类似的还有树状数组等等. 例如:要将

JQuery Easy Ui (Tree树)详解(转)

JQuery Easy Ui (Tree树)详解(转) 第一讲:JQuery Easy Ui到底是什么呢? 首先咱们知道JQuery是对Java Script的封装,是一个js库,主要提供的功能是选择器,属性修改和事件绑定等等.. JQuery ui是在jQuery的基础上,利用jQuery的扩展性,设计的插件. 那么JQuery Easy Ui到底是什么呢? 我的理解就是比JQuery ui更强大,同样都是实现绚丽的多功能效果! jQuery Easy UI的目的就是帮助Web开发者更轻松的打