随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)

对于一个线性回归问题有

为了使得预测值h更加接近实际值y,定义

J越小,预测更加可信,可以通过对梯度的迭代来逼近极值

批梯度下降(batch gradient descent)(the entire training set before taking a single step)

随机梯度下降(stochastic gradient descent)(gets θ “close” to the minimum much faster than batch gradient descent)

这里可以看到更详细的解释http://www.cnblogs.com/czdbest/p/5763451.html

也可以通过求J的梯度等于0向量来确定极值

来自吴恩达机器学习

时间: 2024-12-29 06:17:32

随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)的相关文章

监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)

线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权

批量梯度下降BGD、随机梯度下降SGD和小批量梯度下降MBGD对比

一般线性回归函数的假设函数为: 对应的损失函数为: (这里的1/2是为了后面求导计算方便)下图作为一个二维参数(,)组对应能量函数的可视化图: 下面我们来比较三种梯度下降法 批量梯度下降法BGD (Batch Gradient Descent) 我们的目的是要误差函数尽可能的小,即求解weights使误差函数尽可能小.首先,我们随机初始化weigths,然后不断反复的更新weights使得误差函数减小,直到满足要求时停止.这里更新算法我们选择梯度下降算法,利用初始化的weights并且反复更新w

批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.  为了便于理解,这里我们将使

机器学习笔记 1 LMS和梯度下降(批梯度下降) 20170617

# 概念 LMS(least mean square):(最小均方法)通过最小化均方误差来求最佳参数的方法. GD(gradient descent) : (梯度下降法)一种参数更新法则.可以作为LMS的参数更新方法之一. The normal equations : (正则方程式,将在下一篇随笔中介绍)一种参数更新法则.也可以作为LMS的参数更新方法之一. 三者的联系和区别:LMS是一种机器学习算法.但是最小化均方误差的方法不唯一,采用GD或者正则方程式都是方法之一. # 准备样本  必须要先

flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很

线性规划、梯度下降、正规方程组——斯坦福ML公开课笔记1-2

几个常见问题: 1.为什么损失函数采用最小二乘法,而不是绝对值形式,也不采用最小三乘法?关于这个问题的答案,后面的课程会给出,主要是从最大似然函数角度给出的合理化解释,如果你追问,最大似然函数就代表科学的.合理的吗?那你听说过大数定律.极限中心定律吗?感觉有点像哲学问题了. 2.梯度下降法中提到学习率的问题,我们的目标函数是一个凸二次函数(就是你吃饭的碗的形状),我们知道学习率大会导致震荡,太小会走的慢,那么有没有必要动态调节这个学习率的大小,刚开始下降时可以先大,快收敛时再变小?这个是没有必要

ufldl学习笔记与编程作业:Debugging: Gradient Checking(梯度检测)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/DebuggingGradientChecking/ 所谓梯度,

Batch Gradient Descendent (BGD) & Stochastic Gradient Descendent (SGD)

SGD, BGD初步描述 (原文来自:http://blog.csdn.net/lilyth_lilyth/article/details/8973972,@熊均达@SJTU 做出解释及说明) 梯度下降(GD)是最小化风险函数.损失函数(注意Risk Function和Cost Function在本文中其实指的一个意思,在不同应用领域里面可能叫法会有所不同.解释:@熊均达@SJTU)的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写

【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是