洛谷1140 相似基因

本题地址:http://www.luogu.org/problem/show?pid=1140

题目背景

大家都知道,基因可以看作一个碱基对序列。它包含了4种核苷酸,简记作A,C,G,T。生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物。 在一个人类基因工作组的任务中,生物学家研究的是:两个基因的相似程度。因为这个研究对疾病的治疗有着非同寻常的作用。

题目描述

两个基因的相似度的计算方法如下:
对于两个已知基因,例如AGTGATG和GTTAG,将它们的碱基互相对应。当然,中间可以加入一些空碱基-,例如:

这样,两个基因之间的相似度就可以用碱基之间相似度的总和来描述,碱基之间的相似度如下表所示:
 
那么相似度就是:(-3)+5+5+(-2)+(-3)+5+(-3)+5=9。因为两个基因的对应方法不唯一,例如又有:

相似度为:(-3)+5+5+(-2)+5+(-1)+5=14。规定两个基因的相似度为所有对应方法中,相似度最大的那个。

输入输出格式

输入格式:

共两行。每行首先是一个整数,表示基因的长度;隔一个空格后是一个基因序列,序列中只含A,C,G,T四个字母。1<=序列的长度<=100。

输出格式:

仅一行,即输入基因的相似度。

输入输出样例

输入样例#1:

7 AGTGATG

5 GTTAG

输出样例#1:

14

 

 

【思路】

  线性DP。

可以类比于求最大公共子序列。设d[i][j]为到a串的i与b串的j为止的最大相似度。则有转移方程:

d[i][j]=max{
d[i-1][j-1]+cost(a[i],b[j]),d[i][j-1]+cost(‘-’,b[j]),d[i-1][j]+cost(a[i],’-’) }

 

需要注意的是初始化d[0][j]和d[i][0],另外字串右移一位读入方便处理。

【代码】

 1 #include<cstdio>
 2 #include<iostream>
 3 using namespace std;
 4
 5 const int maxn = 100+10;
 6 const int w[5][5]={
 7                   {5,-1,-2,-1,-3},
 8                   {-1,5,-3,-2,-4},
 9                   {-2,-3,5,-2,-2},
10                   {-1,-2,-2,5,-1},
11                   {-3,-4,-2,-1,-1<<30}
12                 };
13 int h[333],d[maxn][maxn];
14 int n,m;
15 char a[maxn],b[maxn];
16
17 inline int cost(char x,char y) {
18     return w[h[x]][h[y]];
19 }
20
21 int main() {
22     h[‘A‘]=0; h[‘C‘]=1; h[‘G‘]=2; h[‘T‘]=3; h[‘-‘]=4;
23
24     scanf("%d%s%d%s",&n,a+1,&m,b+1);
25     for(int i=1;i<=n;i++) {  d[i][0]=d[i-1][0]+cost(a[i],‘-‘); }
26     for(int j=1;j<=m;j++) {  d[0][j]=d[0][j-1]+cost(‘-‘,b[j]); }
27
28     for(int i=1;i<=n;i++)
29        for(int j=1;j<=m;j++){
30               d[i][j]=d[i-1][j-1]+cost(a[i],b[j]);
31               d[i][j]=max(d[i][j],d[i-1][j]+cost(a[i],‘-‘));
32               d[i][j]=max(d[i][j],d[i][j-1]+cost(b[j],‘-‘));
33        }
34     printf("%d",d[n][m]);
35     return 0;
36 }
时间: 2024-09-27 23:31:22

洛谷1140 相似基因的相关文章

动态规划 洛谷P1140 相似基因

P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了4种核苷酸,简记作A,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类基因工作组的任务中,生物学家研究的是:两个基因的相似程度.因为这个研究对疾病的治疗有着非同寻常的作用. 题目描述 两个基因的相似度的计算方法如下: 对于两个已知基因,例如AGTGATG和GTTAG,将它们的碱基互相对应.当然,中间可以加入一些空碱基-,例如: 这样,两个基因之间的相似度就可以用碱基之间相似度的

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可

洛谷教主花园dp

洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要种的

洛谷 P2801 教主的魔法 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=2801 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是不超过1000的正整数.教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W.(虽然L=R时并不

洛谷P1466 集合 Subset Sums

洛谷P1466 集合 Subset Sums这题可以看成是背包问题 用空间为 1--n 的物品恰好填充总空间一半的空间 有几种方案 01 背包问题 1.注意因为两个交换一下算同一种方案,所以最终 要 f [ v ] / 2 2.要开 long long 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cmath> 4 #include <cstring> 5 #include <string&g

洛谷P1160 队列安排 链表

洛谷P1160 队列安排   链表 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <cstdlib> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using namespace std

洛谷 P3367 并查集模板

#include<cstdio> using namespace std; int n,m,p; int father[2000001]; int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void unionn(int i,int j) { father[j]=i; } int main() { scanf("%d%d",&n,&m); for

[题解]洛谷比赛『期末考后的休闲比赛2』

[前言] 这场比赛已经结束了有几天,但我各种忙,虽然AK但还是没来得及写题解.(我才不会告诉你我跑去学数据结构了) T1 区间方差 (就不贴题好了) 首先可以推公式(我们可以知道,线段树然而并不能通过初中学过的方差公式在log(L)内求出方差): (s2表示方差,L表示区间长度,xi表示区间的每一项,最后一个x上画了一根线表示这些数据的平均数) 用二项式定理完全平方公式可得: 再次展开: 另外,再代入以下这个 得到了: 然后继续吧.. 然后duang地一声合并同类项,于是我们得到了: 然后可以高