HDU_1711_初识KMP算法

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 22568    Accepted Submission(s): 9639

Problem Description

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

Input

The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].

Output

For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.

Sample Input

2

13 5

1 2 1 2 3 1 2 3 1 3 2 1 2

1 2 3 1 3

13 5

1 2 1 2 3 1 2 3 1 3 2 1 2

1 2 3 2 1

Sample Output

6

-1

KMP算法还需多理解。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<algorithm>
#include<cmath>
using namespace std;

int n,m;
int N[1000005],M[10005],Pi[10005];

void preFix()
{
    memset(Pi,0,sizeof(Pi));
    int k=0;
    for(int q=2;q<=m;q++)
    {
        while(k>0&&M[k+1]!=M[q])
            k=Pi[k];
        if(M[k+1]==M[q])
            k++;
        Pi[q]=k;
    }
}

int KMP()
{
    preFix();
    int q=0;
    for(int i=1;i<=n;i++)
    {
        while(q>0&&M[q+1]!=N[i])
            q=Pi[q];
        if(M[q+1]==N[i])
            q++;
        if(q==m)
            return i-m+1;
    }
    return -1;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            scanf("%d",&N[i]);
        for(int j=1;j<=m;j++)
            scanf("%d",&M[j]);
        int ans=KMP();
        printf("%d\n",ans);

    }
    return 0;
}
时间: 2024-10-22 06:32:24

HDU_1711_初识KMP算法的相关文章

【初识】KMP算法入门

举个例子 模式串S:a s d a s d a s d f a s d 匹配串T:a s d a s d f 如果使用朴素匹配算法—— 1 2 3 4 5 6 7 8 9 a s d a s d a s d f a s d a s d a s d f 1 2 3 4 5 6 7 此时,匹配到了S7和T7了,S7为a而T7为f,不匹配那么朴素的匹配算法会这么做—— 1 2 3 4 5 6 7 8 9 a s d a s d a s d f a s d a s d a s d f 1 2 3 4 5

【初识】KMP算法入门(转)

感觉写的很好,尤其是底下的公式,易懂,链接:http://www.cnblogs.com/mypride/p/4950245.html 举个例子 模式串S:a s d a s d a s d f a s d 匹配串T:a s d a s d f 如果使用朴素匹配算法—— 1 2 3 4 5 6 7 8 9 a s d a s d a s d f a s d a s d a s d f 1 2 3 4 5 6 7 此时,匹配到了S7和T7了,S7为a而T7为f,不匹配那么朴素的匹配算法会这么做——

初识KMP

初识KMP 例题传送门 KMP算法是一种改进的字符串匹配算法,时间复杂度为O(m+n). ? --百度百科 KMP算法最重要的一个内容就是next数组,它让KMP算法从普通的字符串匹配算法的O(mn)优化到了O(n+m). next数组主要的功能就是让两个串匹配失败时,能够快速地找到下一个匹配的地方. 例如: 串A--> ABABABC 串B--> ABA next数组要求出对于每个next[j],使B[1...k]=B[j-k+1...j]最大的k. 所以就有以下程序: for(int i=

hiho 1015 KMP算法 &amp;&amp; CF 625 B. War of the Corporations

#1015 : KMP算法 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一只河蟹,于是河蟹就向小Hi和小Ho提出了那个经典的问题:“小Hi和小Ho,你们能不能够判断一段文字(原串)里面是不是存在那么一些……特殊……的文字(模式串)?” 小Hi和小Ho仔细思考了一下,觉得只能想到很简单的做法,但是又觉得既然河蟹先生这么说了,就

KMP算法详解

这几天学习kmp算法,解决字符串的匹配问题,开始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符;若不相等,则比较S的第二个字符和T的第一个字符,依次比较下去,直到得出最后的匹配结果.BF算法是一种蛮力算法.)虽然也能解决一些问题,但是这是常规思路,在内存大,数据量小,时间长的情况下,还能解决一些问题,但是如果遇到一些限制时间和内存的字符串问

KMP算法

1 /* next数组是KMP算法的关键,next数组的作用是:当模式串T和主串S失配 2 * ,next数组对应的元素指导应该用T串中的哪一个元素进行下一轮的匹配 3 * next数组和T串相关,和S串无关.KMP的关键是next数组的求法. 4 * 5 * ——————————————————————————————————————————————————————————————————— 6 * | T | 9 | a | b | a | b | a | a | a | b | a | 7

KMP算法解决字符串出现次数

比如主串为:"1001110110" 子串为:"11" 则出现位置分别为:3 4 7 //KMP算法 2015.6.7 #include<iostream> #include<stdlib.h> using namespace std; int main() { char *s = "1001110110"; char *p = "11"; int ar[20] = { 0 }; //next ar[0

串模式匹配之BF和KMP算法

本文简要谈一下串的模式匹配.主要阐述BF算法和KMP算法.力求讲的清楚又简洁. 一 BF算法 核心思想是:对于主串s和模式串t,长度令为len1,len2,   依次遍历主串s,即第一次从位置0开始len2个字符是否与t对应的字符相等,如果完全相等,匹配成功:否则,从下个位置1开始,再次比较从1开始len2个字符是否与t对应的字符相等.... BF算法思路清晰简单,但是每次匹配不成功时都要回溯. 下面直接贴代码: int BF_Match(char *s, char *t) { int i=0,

跳跃表,字典树(单词查找树,Trie树),后缀树,KMP算法,AC 自动机相关算法原理详细汇总

第一部分:跳跃表 本文将总结一种数据结构:跳跃表.前半部分跳跃表性质和操作的介绍直接摘自<让算法的效率跳起来--浅谈"跳跃表"的相关操作及其应用>上海市华东师范大学第二附属中学 魏冉.之后将附上跳跃表的源代码,以及本人对其的了解.难免有错误之处,希望指正,共同进步.谢谢. 跳跃表(Skip List)是1987年才诞生的一种崭新的数据结构,它在进行查找.插入.删除等操作时的期望时间复杂度均为O(logn),有着近乎替代平衡树的本领.而且最重要的一点,就是它的编程复杂度较同类