Noip前的大抱佛脚----根号对数算法

根号算法

分块

数列分块入门九题(hzwer)

  • 入门题1,2,3,4,5,7

问题:给一段区间打上标记后单点查询

解法:主要是每块维护一些标记,计算答案等,此类分块较为简单

注意:块大小一般为\(\sqrt n\)

复杂度:\(O(n\sqrt n)\)

  • 入门题6

问题:每次朝数列中间插入一个元素,查询第k个元素是什么

解法:块大小超过一定值后暴力重构!采用链表实现

复杂度:\(O(n\sqrt n)\)

  • 入门题8

问题:每次询问一个区间内为\(c?\)的元素个数,并把整个区间改为\(c?\)

解法:维护一个区间覆盖标记,如果块内没有标记就暴力修改

注意:复杂度分析要用到FlashHu的势能分析

势能(potential energy)是储存于一个系统内的能量,也可以释放或者转化为其他形式的能量。

把一个块搅乱,相当于给其增加\(O(\sqrt n)\)的势能,表示其再次被打上全局tag所需要的代价

每次操作最多把两个块搅乱,所以每次操作最多增加\(O(2\sqrt n)\)的势能,同时整理好一个块需要的代价是其势能,并能把其势能降为\(O(1)\)

这样子最多搅乱\(n\)个块,增加\(O(2n\sqrt n)\)的势能,最多把他们所有的势能都变成\(1\),复杂度为\(O(4n\sqrt n)=O(n\sqrt n)\)

理解:增加势能需要相应代价,减少势能也需要相应代价,对应分析其最大势能即可得出复杂度

拓展:分析每次可以从栈中弹出多个元素的复杂度(还是\(O(n)\),其总势能最大为\(O(n)\))

  • 入门题9

问题:在线维护区间最小众数

解法:离线就可以用莫队搞了

考虑分块,分块是一个很好的算法,维护每个数在数列中的前缀和是\(O(n^2)\)的时空复杂度,但是给分个块就可以做到\(O(n\sqrt n)\)了

一段区间的众数一定属于:A.零散块内的数 B.整块内的众数,一共数量不超过\(\sqrt n\)个

所以维护两个数组:\(f[i][j]\)表示从第\(i\)块到第\(j\)块的众数,这个可以\(O(\sqrt n\sqrt n\sqrt n)\)的预处理出来;\(g[i][j]\)表示离散化后的数字\(i\)在前\(j\)块中出现的次数,这个可以\(O(n)\)赋值后\(O(n\sqrt n)\)统计前缀和而得到

之后便只需要:A.统计每个数在整块内的出现个数\(O(1×\sqrt n)\) B.统计零散块中的数\(O(\sqrt n)\)

综上,复杂度为\(O(n\sqrt n)\),完美通过此题/蒲公英

分块出过什么题

维护序列哈,支持一些在线的区间询问

  • 区间tag单点查询、区间查询等等老掉牙的套路(但是考场上遇到维护序列的题这也是一种思想方式

    ?

  • 询问位置\(\%p=k\)的数的权值和,要求支持单点修改,\(val\le 1W,n\le 15W\)(哈希冲突)

对于\(p\le\sqrt n\),维护\(s[p][k]\)表示答案,这个可以\(O(n\sqrt n)\)扫一遍得到答案

对于\(p>\sqrt n\),可以开\(s[i][1k]\)表示第i块的桶,统计前缀和,然后暴力对\(\sqrt n\)的桶扫一遍

综上,复杂度为\(O(n\sqrt n)\)

  • 求区间逆序对数,不修改,\(n\le 5W\)(Gty的妹子序列)

先预处理好\(s[i][j]\)表示从第\(i\)块的开头到\(j\)位置这一段区间产生的逆序对数,\(O(n\sqrt n logn)\)

然后查询时剩下的左半截用主席树暴力查询,\(O(n\sqrt nlogn)\)

  • 单点修改,求最短前缀使得前缀\(gcd\)与前缀\(xor\)的乘积恰好为\(x\),\(n\le 10W\)(公约数数列)

有一个奇妙的性质:一个数集的\(gcd\)在加入一个数后要么不变,要么至少\(/2\)。

对每一块维护一个gcd和、异或前缀和、Map(维护异或前缀和为x的位置)

然后修改就暴力重构该块\(O(n\sqrt nlogn)\)

查询就依次扫每一个块,如果这个块没有使得gcd减小,那么这个块内每一个位置的前缀gcd都相同,在Map中查找是否有符合条件的异或和即可;如果gcd减小了就暴力一个一个找,由于上面的性质暴力扫的块不会超过\(logn\)个。

总复杂度为\(O(n\sqrt nlogn)\)

  • 无修改询问区间内数值\(\%p=k\)的元素个数,\(n\le 15W\)(考试9.20T3)

若\(p\le\sqrt n\),对每块维护\(s[i][p][k]\)表示答案,然后边角暴力统计,\(O(n\sqrt n)\)

若\(p>\sqrt n\) ,对每块维护\(s[i][j]\)表示桶,然后做一个前缀和暴力查询,\(O(n\sqrt n)\)

简直傻逼我做不出真是太菜了

莫队

树莫队

有两种方法,一种是把树划分成若干块,然后暴力去移动其中一个端点;另一种是把树的欧拉序抠出来(像括号序列,每个点出现两次),转化为序列问题后再用序列莫队的方法。我学习的是拓展性更强的后者。两者都要用\(vis[i]\)表示i这个点选了没选,每次\(update\)就把\(vis[x]^=1\)

序列莫队

无修

对序列位置分块,每块大小为\(\sqrt n\),将询问离线,按照左端点所在块为第一关键字右端点为第二关键字排序,每次暴力移动转移,复杂度\(O(n\sqrt n)\)

带修

块大小为\(n^{\frac{2}{3}}\),按照左端点所在块为第一关键字,右端点所在块为第二关键字,操作时间为第三关键字排序(所有排序都是从小到大),复杂度\(O(n^{\frac{5}{3}})\)

分治

序列分治

一般适用于:一组询问,对象是所有子区间的问题

把区间分治成为跨过中点的区间和左右分治

点分治

  • 树上路径抠成序列后DP(有结合律),可以采用点分治实现(牛客Wannafly24C网址

    实现方式:把询问挂链,分治的时候,把分治区域的\(rt\)都设置为分治中心,同时给不同子树标个不同的\(Tag\)(同一子树相同)。每到一个结点便扫一遍询问,当询问的另一个点也在同样的分治区域,并且\(Tag\)不同,便计算贡献。

    这样能够保证不重不漏地计算所有的贡献,复杂度为\(O(nlogn*DP)\),为点分治×DP的复杂度(询问只会被扫log次)

倍增

并查集倍增

[SCOI2016]萌萌哒 对区间的每个点一一对应连并查集

原文地址:https://www.cnblogs.com/xzyxzy/p/9903891.html

时间: 2024-11-05 18:41:31

Noip前的大抱佛脚----根号对数算法的相关文章

Noip前的大抱佛脚----文章索引

Noip前的大抱佛脚----赛前任务 Noip前的大抱佛脚----考场配置 Noip前的大抱佛脚----数论 Noip前的大抱佛脚----图论 Noip前的大抱佛脚----动态规划 Noip前的大抱佛脚----数据结构 Noip前的大抱佛脚----根号对数算法 Noip前的大抱佛脚----字符串 Noip前的大抱佛脚----一些思路 Noip前的大抱佛脚----奇技淫巧 原文地址:https://www.cnblogs.com/xzyxzy/p/9903933.html

Noip前的大抱佛脚----一些思路

一些有启发性的思路 序列 线段树(当然还要有主席树啊!) 差分和前缀和啊 分块 莫队 看到等差数列先推一波式子啊(天天爱跑步) 有序序列的动态插入删除 有的时候需要算贡献,当你发现序列(离散化后)值域一定时,便可以尝试使用树状数组 维护\(mex\) 可以尝试使用值域分块,当这个块内全部有值了就打个\(tag\) 等和序列 大概就是说可以多项式乘起来那种吧,可以发现差分之后是回文串! 序列差分 异或序列可以差分!!(具体差分方法:遇到一个1,给当前位置和下一个位置异或上一个1,这样统计前缀和后就

Noip前的大抱佛脚----数论

数论 知识点 Exgcd \(O(logn)\)求解\(Ax+By=C\)的问题 1.若\(C\%gcd(A,B)!=0\)则无解 2.\(Gcd=gcd(A,B);A/=Gcd,B/=Gcd,C/=Gcd\) 3.代入下面代码求\(Ax+By=1\) 4.\(x*C\),得到一组特解 5.通解为\(\begin{cases}x=x_0+k*B \\y=y_0+k*A\end{cases}\) void Exgcd(ll a,ll b,ll &x,ll &y) { if(!b){x=1;y

Noip前的大抱佛脚----数据结构

数据结构 线段树 注意:空间开4倍 神奇标记 From8.26 Test_zsy(CPU监控) 如果一个点权为\(val\)的点被打上了\((a,b)\)标记,那么他的实际点权为\(max(a+val,b)\) 干啥滴? 标记不下放 区间加标记不下放,维护区间max或者最大值 方法是当前\(tag\)维护当前区域标记,\(t\)维护左右儿子的\(max+tag[now]\),并没有快多少,如果仍然忘记见提交记录 并查集 维护二分图 并查集每个点维护是否要改颜色,然后按秩合并/按大小合并即可 实际

HDU 1031 Design T-Shirt 选前k大

相当于给出一组数列,然后选择前K大的数的算法. 本题没有给出详细的数据,故此就使用动态分配空间的方法了. 而这种题最好的算法就是使用快排思想,期望时间效率就是O(n)了. 最基本入门解决这种题的算法是直接排序了.那就成了水代码了.用上快排的思想才能体现出水平. 不过这种快排实在考的太多了,建议一定要掌握. 每次做这个算法的题目总会要调试一定时间的,每次都出现奇葩的错误.看来还是不够细心. 做题的时候一定要排除杂念,有干扰,后果很严重,会花长很多时间. 靖空间做题,一定要静,达到一种禅的境界.说禅

算法导论学习之线性时间求第k小元素+堆思想求前k大元素

对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思路例如以下: 1.分解:将A[p,r]分解成A[p,q-1]和A[q+1,r]两部分.使得A[p,q-1]都小于A[q],A[q+1,r]都不小于A[q]; 2.求解:假设A[q]恰好是第k小元素直接返回,假设第k小元素落在前半区间就到A[p,q-1]递归查找.否则到A[q+1,r]中递归查找. 3

寻找第K大元素的八大算法、源码及拓展

一.问题描述 所谓“第(前)k大数问题”指的是在长度为n(n>=k)的乱序数组中S找出从大到小顺序的第(前)k个数的问题. 第K大问题可以是现实问题,譬如竞价排名中的第K个排名,或者多个出价者中的第K大价格等等. 二.解法归纳 解法1: 我们可以对这个乱序数组按照从大到小先行排序,然后取出前k大,总的时间复杂度为O(n*logn + k). 很好理解,利用快排对所有元素进行排序,然后找到第K个元素即可. 解法2: 利用选择排序或交互排序,K次选择后即可得到第k大的数.总的时间复杂度为O(n*k)

NOIP前必须记住的30句话

NOIP前必须记住的30句话 1.比赛前一天晚上请准备好你的各种证件,事先查好去往考场的路线2.比赛之前请先调整你的屏幕分辨率到你喜欢的大小3.比赛之前请把编译器的字体调为你平时惯用的字体,尤其是注意这种字体中的逗号,点,1,l这种易混淆的字是不是区分明显4.在不影响视野的情况下,请将字号尽可能调大,方便查错5.请将题目通读完以后,再开始深入思考你认为最容易的一道题6.即使这道题再容易,也不要着急写代码,请先明确自己每一步要干什么后,再开始写,轻敌会是你最大的错误7.即使这道题看起来再没法做,也

hdu---(1280)前m大的数(计数排序)

前m大的数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 10633    Accepted Submission(s): 3707 Problem Description 还记得Gardon给小希布置的那个作业么?(上次比赛的1005)其实小希已经找回了原来的那张数表,现在她想确认一下她的答案是否正确,但是整个的答案是很庞大的表,小希