Hdoj 1003.Max Sum 题解

Problem Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

Author

Ignatius.L



思路

最大连续子序列和问题,状态转移方程式:

\(f[i] = max(f[i-1]+a[i],a[i])\)

可以得出代码如下

代码

#include<bits/stdc++.h>
using namespace std;
const int INF = 1<<30;
int a[100001];
int main()
{
    int n;
    cin >> n;
    for(int q=1;q<=n;q++)
    {
        int len;
        cin >> len;

        int maxsum = -INF;
        int currentsum = 0;
        int l = 0,r = 0;
        int tmp = 1;
        for(int i=1;i<=len;i++)
        {
            cin >> a[i];
            if(currentsum >= 0)
                currentsum += a[i];
            else
            {
                currentsum = a[i];
                tmp = i;
            }
            if(currentsum > maxsum)
            {
                maxsum = currentsum;
                l = tmp;
                r = i;
            }
        }
        cout << "Case " << q << ":\n";
        cout << maxsum << " " << l << " " << r << endl;
        if(q!=n) cout << endl;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/MartinLwx/p/9863574.html

时间: 2024-09-30 04:12:59

Hdoj 1003.Max Sum 题解的相关文章

hdoj 1003 Max Sum 【最大子段和】【贪心】

题意:... 策略:看着像贪心,感觉也是贪心. 很久之前做的,又做了一遍,好题. 代码: #include<stdio.h> #include<string.h> int s[100005]; int main() { int t, i, j, l, st, en, n, v = 1; scanf("%d", &t); while(t --){ scanf("%d", &n); for(i = 1; i <= n; i

最大子序列和 HDOJ 1003 Max Sum

题目传送门 1 /* 2 题意:求最大连续子序列和及两个端点 3 累积遍历算法 O(n):依照sum<0将序列分块,最值在某一块上产生.dp也是同样的思路:dp[i] = max (dp[i-1] + a[i], a[i]) 其实是一样的 4 1003就这么难?? 5 详细解释 6 */ 7 /************************************************ 8 * Author :Running_Time 9 * Created Time :2015-8-10

HDOJ 1003 Max Sum【MSS】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 158875    Accepted Submission(s): 37166 Problem Description Given a sequence a[1],a[2

hdoj 1003 Max Sum

Max Sum Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submission(s) : 11   Accepted Submission(s) : 5 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a su

HDOJ 1003 Max Sum(dp)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 思路分析:该问题为最大连续子段和问题,使用动态规划求解: 1)最优子结构:假设数组为A[0, 1, 2,….., n],在所有的可能的解中,即解空间中找出所有的解,可以知道,所有的解都为以A[j](j = 0, 1, …, n) 为尾的连续子段,则假设dp[j]表示以在数组A[1, 2, …, j]中以A[j]结尾的字段的最大的和,我们就可以刻画子空间中的所有解的特征:如果 dp[j] > 0

杭电 1003 Max Sum

http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 142781    Accepted Submission(s): 33242 Problem Description Given a sequence a[1],a[2],a[3

HDU 1003 Max Sum 最大连续子序列的和

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input contains

[ACM] hdu 1003 Max Sum(最大子段和模型)

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 135262    Accepted Submission(s): 31311 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max s

HDU 1003 Max Sum(dp,最大连续子序列和)

Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input