数据仓库与ODS

1. 引言

本篇主要讲述操作数据存储(ODS)系统产生的背景、定义、特点,以及它与数据仓库的区别。
在前两篇,笔者介绍了什么是数据仓库?为什么需要数据仓库?数据仓库系统的体系结构是什么?因此可能在读者心里已经形成了企业数据存储的DB~DW两层体系结构的概念,但在实际应用中,并不总是这样,有时候我们可能需要ODS这一系统来搭建DB~ODS~DW三层数据体系,那么什么是ODS?为什么需要ODS?ODS与DW的区别又是什么?下面将在第2-6节介绍ODS的理论知识,在第7节以电信运营商为例介绍ODS的实际应用。由于是学习心得,如有错误或者不严谨的地方,希望读者批评指正。

2. ODS产生的背景

人们对数据的处理行为可以划分为操作型数据处理和分析型数据处理,操作型数据处理一般放在传统的数据库(Database,DB)中进行,分析型数据处理则需要在数据仓库(Data Warehouse,DW)中进行。但是并不是所有的数据处理都可以这样划分,换句话说,人们对数据的处理需求并不只有这两类,比如,有些操作型处理并不适合放在传统的数据库上完成,也有些分析型处理不适合在数据仓库中进行。这时候就需要第三种数据存储体系,操作数据存储(Operational Data Store,ODS)系统就因此产生。它的出现,也将DB~DW两层数据架构转变成DB~ODS~DW三层数据架构。

那么,什么是ODS?
ODS是用于支持企业日常的、全局应用的数据集合。
(PS:这样定义,可能还是不清楚,看完下面3、4节应该就能明白~)

3. ODS数据的基本特征

ODS中的数据具有以下4个基本特征:
① 面向主题的:进入ODS的数据是来源于各个操作型数据库以及其他外部数据源,数据进入ODS前必须经过 ETL过程(抽取、清洗、转换、加载等)。
② 集成的:ODS的数据来源于各个操作型数据库,同时也会在数据清理加工后进行一定程度的综合。
③ 可更新的:可以联机修改。这一点区别于数据仓库。
④ 当前或接近当前的:“当前”是指数据在存取时刻是最新的,“接近当前”是指存取的数据是最近一段时间得到的。

4. ODS的功能

(1)实现企业级的OLTP操作:
传统的操作型数据库往往只存放企业某一类业务或者某一个部门的数据,因此无法面向企业全局数据的OLTP,而ODS可以实现。因为ODS的数据是面向整个企业进行集成汇总的,克服了原来面向应用的操作型数据库数据分散的缺陷。
(2)实现即时的OLAP操作:
在数据仓库上进行OALP,往往由于数据量十分庞大而需要较长的时间。而在企业实际应用中,对于一些较低层次的决策,往往并不需要太多的历史数据,可能只需要参考当前的或者接近当前的数据就可以完成,并且要求具有较快的响应时间,因此数据仓库显然无法满足这样的要求,但是ODS可以实现。ODS中不仅有面向企业全局的细节数据和汇总数据,而且规模比数据仓库小,具有较强的实时响应能力。

小结:通过3、4节的介绍,可以这样解释ODS的概念:
ODS是这样一种数据存储系统,它将来自不同数据源的数据(各种操作型数据库、外部数据源等)通过ETL过程汇聚整合成面向主题的、集成的、企业全局的、一致的数据集合(主要是最新的或者最近的细节数据以及可能需要的汇总数据),用于满足企业准实时的OLAP操作和企业全局的OLTP操作,并为数据仓库提供集成后的数据,将数据仓库系统中的ETL过程下沉到ODS中完成以减轻数据仓库的压力。

5. DB~ODS~DW三层体系结构


ODS和DW面向不同的用户,为不同的需求产生,因此都有不可替代的作用,两者相互结合、相互补充。
ODS在三层体系结构中扮演着承上启下的作用。
一方面,ODS在原来独立的各个DB的基础上建立了一个一致的、企业全局的、面向主题的数据环境,使原有的DB系统得到改造。
另一方面,ODS使DW卸去了数据集成、结构转换等一系列负担,对DW的数据追加通过ODS完成,大大简化的DW的数据传输接口和DW管理数据的复杂度。
ODS系统的建设,弥补了DB~DW两层体系结构的不足,但是ODS并不是必需的,当企业并不需要操作型集成信息时,基于DB~DW两层体系结构是较优的,如果需要,那么DB~ODS~DW三层体系结构则是较优的。

6. ODS与DW的区别

ODS在DB~ODS~DW三层体系结构中起到一个承上启下的作用。
ODS中的数据虽然具有DW中的数据的面向主题的、集成的特点,但是也有很多区别。
(1)存放的数据内容不同:
ODS中主要存放当前或接近当前的数据、细节数据,可以进行联机更新。
DW中主要存放细节数据和历史数据,以及各种程度的综合数据,不能进行联机更新。
ODS中也可以存放综合数据,但只在需要的时候生成。
(2)数据规模不同:
由于存放的数据内容不同,因此DW的数据规模远远超过ODS。
(3)技术支持不同:
ODS需要支持面向记录的联机更新,并随时保证其数据与数据源中的数据一致。
DW则需要支持ETL技术和数据快速存取技术等。
(4)面向的需求不同:
ODS主要面向两个需求:一是用于满足企业进行全局应用的需要,即企业级的OLTP和即时的OLAP;二是向数据仓库提供一致的数据环境用于数据抽取。
DW主要用于高层战略决策,供挖掘分析使用。
(5)使用者不同:
ODS主要使用者是企业中层管理人员,他们使用ODS进行企业日常管理和控制。
DW主要使用者是企业高层和数据分析人员。

7. ODS在电信行业的具体应用

(1)运营商为什么要建ODS?
随着市场的不断变化,电信运营商需要以“产品”为中心向以“客户”为中心转型,而这种转型需要建立客户统一视图信息,并实现信息在各渠道、前后端的共享,但是目前这些数据分布在各个生产系统中,并存在各种数据不一致的现象。因此,提出了以ODS系统来解决这一问题。具体地说,希望通过ODS系统来满足以下三种需求:
① 建立企业全局的客户统一视图信息,指导客户品牌经营和精确管理;
② 建立统一的数据共享平台,快速支撑跨系统应用,促进企业数据模型的落地,形成企业标准数据;
③ 提升企业数据质量,解决生产系统之间数据不一致、数据质量差的问题。
(2)ODS的系统定位:
ODS系统是一个跨系统的数据共享平台,承接操作环境和分析环境。

企业数据架构建立在统一的数据模型的基础上,由生产系统自有数据库、操作数据存储(ODS)、企业数据仓库(EDW)三个层面组成。其中,ODS存储按主题分类的面向运营的准实时数据,提供统一的企业数据视图;生产系统自有数据库存储该生产系统内部实时交易数据;EDW存储面向经营决策分析的历史数据和综合数据。
ODS对生产系统产生的数据进行清洗、过滤、转换、整合,是提供给EDW高质量数据的重要来源之一,同时为各个生产系统提供准实时的运营报表等跨系统共享数据服务。另外,在企业运营层,对于需要同时利用跨系统的操作型数据和相关分析结果数据的协作性应用需求,ODS也起到关键支撑作用。
(3)ODS的业务目标:
① 统一准实时的数据共享
② 生产经营数据质量检查
③ 统一客户视图的提供与展示
④ 生产经营报表统一的提供与展示
⑤ 关键生产经营绩效指标与经营风险的监控
⑥ 跨系统的批量计算
(4)ODS与生产系统的比较:
相同点:
① 均包含当前的细粒度运营数据;
② 使用者都是一线的生产和管理人员;
③ 都是数据质量管理闭环流程中的一个环节(ODS对所存储的数据进行一致性、完整性、正确性的校验,形成数据校验结果并返回给源系统进行修正);
不同点:
① ODS不产生运营数据,运营数据由各个生产系统产生;
② 在数据质量管理闭环流程中,ODS负责发现数据质量问题,生产系统负责解决数据质量问题;
③ ODS为其他系统提供准实时的数据共享服务,生产系统提供实时的数据共享服务;
④ ODS提供基于跨系统数据的查询应用,生产系统通过与ODS合作提供跨系统的准实时查询应用;
⑤ ODS系统提供基于跨系统数据的固定或者动态报表,生产系统提供基于单系统的、实时性要求高的固定或动态报表;
⑥ ODS负责批量数据的计算,生产系统负责事务驱动的数据计算。
(5)ODS与EDW的比较:
相同点:
① ODS和EDW都不是运营数据的产生系统,都是通过ETL等过程从各种数据源中加载数据;
② ODS和EDW的数据都是分层存储,既有细节数据,又有根据不同维度汇总的综合数据;
③ ODS和EDW都可以提供基于跨系统整合后数据的报表类应用。
不同点:
① ODS中的细节数据时效性高,并提供给其他系统共享,而EDW中的细节数据时效性低,不提供给其他系统共享,只供自身挖掘分析使用;
② ODS中的数据汇总维度较少,EDW中数据汇总维度多。
③ ODS提供的报表内容主要是面向生产运营过程中数据的统计与监控,不做进一步分析和挖掘,而EDW中的报表内容主要是针对跨系统的数据进行深度分析和挖掘,着重趋势分析并提供评估和决策功能;
④ ODS面向一线生产的管理人员,EDW面向专业分析人员和企业中高层管理人员;
⑤ ODS中的运用数据来源是生产系统,EDW运营数据主要从ODS中获取,ODS中没有的才从生产系统中获取;
⑥ ODS中的数据保存期限短于EDW中的数据保存期限。

转载自:https://www.cnblogs.com/hbsygfz/p/4759680.html

原文地址:https://www.cnblogs.com/lxbmaomao/p/9788245.html

时间: 2024-10-10 11:12:12

数据仓库与ODS的相关文章

DW数据仓库与ODS的区别

这两天接触到ODS,开始很纳闷,有了DW(Data Warehouse)干嘛还要ODS(Operational Data Store),于是不查不知道,一查吓一跳,这里面还有这么多道道,这里总结一下,当作学习了. 简单说:ODS 操作型数据存储,存储的是当前的数据情况,给使用者提供当前的状态,提供即时性的.操作性的.集成的全体信息的需求.DW 数据仓库存储是一个面向主题的,反映历史变化数据,用于支撑管理决策. 参考一:http://www.cnblogs.com/liqiu/p/4947801.

对数据仓库ODS DW DM的理解

原文链接:https://www.jianshu.com/p/72e395d8cb33 今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性数据 DW——数据仓库 DM——数据集市 1.数据中心整体架构 数据中心整体架构 数据仓库的整理架构,各个系统的元数据通过ETL同步到操作性数据仓库ODS中,对ODS数据进行面向主题域建模形成DW(数据仓库),DM是针对某一个业务领域建立模型,具体用户(决策层)查看DM生成的报表. 2.数据仓库的O

数据仓库的两种建模方法

范式建模 Inmon提出的集线器的自上而下(EDW-DM)的数据仓库架构.操作型或事务型系统的数据源,通过ETL抽取转换和加载到数据仓库的ODS层,然后通过ODS的数据建设原子数据的数据仓库EDW,EDW不是多维格式的,不方便上层应用做数据分析,所以需要通过汇总建设成多维格式的数据集市层.优势:易于维护,高度集成:劣势:结构死板,部署周期较长 范式建模应用在EDW层 一个符合第三范式的关系必须具有以下三个条件:1. 每个属性的值唯一,不具有多义性;2. 每个非主属性必须完全依赖于整个主键,而非主

数据仓库基础理论笔记

第一节 互联网电商大数据环境 如果你真正进入这个行业了! 入职后你所在部门一般叫:数据平台.数据中心.数据部 可能的团队:数据仓库组:BI(商业智能)组.某事业部数据组:架构组:数据专家组:... 部门里重要的几拨人,一拨是搭建和保证hadoop系统每天正常运行和改进hadoop系统的架构人员,这批人对hadoop细节非常熟悉,另一拨是满足业务系统需求,每天都在开发应用的开发人员,这批人员开发经验非常丰富, 业务流程也很熟悉,还有一拨是管理系统的上线下线运行监控授权等运营工作的运营人员,这批人可

浅谈数据仓库 (三) 数据漂移处理

前言 我们是一个做传统会员管理CRM的团队,应用数据的级别比较高,过去会存在这样一种现象,T+1 财务报表,运营统计各类报表 的指标偶尔会和商户的自己记录用户消费储值记录会有出入,后来了解到,我们系统中存在很严重的数据漂移问题,这也是dw系统或者ods来说普遍存在的问题,今天我们好好聊下该如何解决数据漂移问题   数据漂移产生的原因 通常我们把从源系统同步进入数据仓库的第一层数据成为ODS层数据,我们公司目前只有ODS一层,虽说只有一层,但是仍然有有一个顽疾:数据漂移,简单来说就是ODS表的同一

数据仓库基础内容

一.数据仓库概念 将多数据源中的数据整合一起,进行数据分析,此时数据仓库对多种业务数据进行筛选和整合,可以用于数据分析.数据挖掘.数据报表.时效性T+1. 二.数据仓库的特点 主题性:数据仓库是针对某个主题来进行组织,比如滴滴出行,司机行为分析就是一个主题,所以可以将多种不同的数据源进行整合.而传统的数据库主要针对某个项目而言,数据相对分散和孤立. 集成性:数据仓库需要将多个数据源的数据存到一起,但是这些数据以前的存储方式不同,所以需要经过抽取.清洗.转换的过程 稳定性:保存的数据是一系列历史快

ETL学习整理 PostgreSQL

ETL分别是"Extract"." Transform" ."Load"三个单词的首字母缩写也就是"抽取"."转换"."装载",但我们日常往往简称其为数据抽取. ETL是BI/DW(商务智能/数据仓库)的核心和灵魂,按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤. ETL包含了三方面: "抽取":将数据从各

【转载】ETL 浅谈

ETL是将业务系统的数据经过抽取.清洗转换之后加载到数据仓库的过程,目的是将企业中的分散.零乱.标准不统一的数据整合到一起,为企业的决策提供分析依据. ETL是BI项目重要的一个环节. 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败. ETL的设计分三部分:数据抽取.数据的清洗转换.数据的加载.在设计ETL的时候我们也是从这三部分出发.数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)

BI项目中的ETL设计详解(数据抽取、清洗与转换 )

ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败.ETL也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为项目后期开发提供准确的数据. ETL的设计分三部分:数据抽取.数据的清洗转换.数据的加载.在设计ETL的时候也是从这三部分出发.数据的抽取是从各个不同的数据源抽取到ODS中(这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率.ETL三个部