论文笔记之: Wide Residual Networks

  

Wide Residual Networks

时间: 2024-11-17 02:13:57

论文笔记之: Wide Residual Networks的相关文章

论文笔记《Fully Convolutional Networks for Semantic Segmentation》

<Fully Convolutional Networks for Semantic Segmentation>,CVPR 2015 best paper,pixel level, fully supervised. 主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation. 我们已经有一个CNN模型,首先要把CNN的全连接层

论文笔记 Densely Connected Convolutional Networks

首先我们从宏观的角度理解一下这篇论文做了什么.这篇论文引入了一个"Dense Block",该模块的的组成如下图所示(要点就是,Input输入到后续的每一层,每一层都输入到后续层) 在实际应用的时候,如果我们将"Dense Block"作为一个building block,那么可以按照如下的方式构建深度网络结构(是不是一下子就理解了这篇文章做了什么?).  下面我们来分析一下这个"Dense Block"的一些特点 "Dense Blo

【论文笔记】Spatial Transformer Networks

参考文献:**Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. 2015: 2017-2025. 摘要 卷积神经网络(CNN)已经被证明能够训练一个能力强大的分类模型,但与传统的模式识别方法类似,它也会受到数据在空间上多样性的影响.这篇Paper提出了一种叫做空间变换网络(Spatial Transfor

论文笔记 Weakly-Supervised Spatial Context Networks

Background 在文本处理领域,"The idea of local spatial context within a sentence, proved to be an effective supervisory signal for learning distributed word vector representations",这有以下两个作用"Given a word tokenized corpus of text, to learn a represent

论文笔记 《Maxout Networks》 &amp;&amp; 《Network In Network》

论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxout:http://arxiv.org/pdf/1302.4389v4.pdfNIN:http://arxiv.org/abs/1312.4400 参考 maxout和NIN具体内容不作解释下,可以参考:Deep learning:四十五(maxout简单理解)Network In Network 各用一句话

【转】Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

原作者:zouxy09 原文链接:http://blog.csdn.net/zouxy09/article/details/9993371 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不

【论文笔记】Recursive Recurrent Nets with Attention Modeling for OCR in the Wild

写在前面: 我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正! E-mail:[email protected]. <Recursive Recurrent Nets with Attention Modeling for OCR in the Wild>已经被CVPR 2016(CV领域三大顶会之一)正式接收了,主要是介绍了

Deep Learning论文笔记之(一)K-means特征学习

Deep Learning论文笔记之(一)K-means特征学习 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正