浅谈 Active Learning

1. Active Query Driven by Uncertainty and Diversity for Incremental Multi-Label Learning

The key task in active learning is to design a selection criterion such that queried labels can improve the classification model most.

many active selection criteria: 

uncertainty measures the confidence of the current model on classifying an instance ,

diversity measures how different an instance is from the labeled data ,

density measures the representativeness of an instance to the whole data set .

In traditional supervised classification problems, one instance is assumed to be associated with only one label. However, in many real world applications, an object can have multiple labels simultaneously. Multi-label learning is a framework dealing with such objects.

时间: 2024-10-06 15:20:09

浅谈 Active Learning的相关文章

【转载】浅谈深度学习(Deep Learning)的基本思想和方法

浅谈深度学习(Deep Learning)的基本思想和方法 分类: 机器学习 信息抽取 Deep Learning2013-01-07 22:18 25010人阅读 评论(11) 收藏 举报 深度学习(Deep Learning),又叫Unsupervised Feature Learning或者Feature Learning,是目前非常热的一个研究主题. 本文将主要介绍Deep Learning的基本思想和常用的方法. 一. 什么是Deep Learning? 实际生活中,人们为了解决一个问

浅谈深度学习中潜藏的稀疏表达

浅谈深度学习中潜藏的稀疏表达 “王杨卢骆当时体,轻薄为文哂未休. 尔曹身与名俱灭,不废江河万古流.” — 唐 杜甫<戏为六绝句>(其二) [不要为我为啥放这首在开头,千人千面千理解吧] 深度学习:概述和一孔之见 深度学习(DL),或说深度神经网络(DNN), 作为传统机器学习中神经网络(NN).感知机(perceptron)模型的扩展延伸,正掀起铺天盖地的热潮.DNN火箭般的研究速度,在短短数年内带来了能“读懂”照片内容的图像识别系统,能和人对话到毫无PS痕迹的语音助手,能击败围棋世界冠军.引

[Mechine Learning] Active Learning

1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi-supervised learning)是三类研究比较多,应用比较广的学习技术,wiki上对这三种学习的简单描述如下: 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类. 非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利

浅谈前端性能优化(移动端)

上一篇讲了PC端的部分:前端性能优化(PC端),这次继续说移动端的.相对于PC端的,移动web浏览器上有一些明显的特点:设备的屏幕小.新特性兼容性较好.支持一些比较新的HTML5和CSS3.需要与Native应用交互等.但移动端可用的CPU资源和网络资源极为有限,因此要做好移动端web上的优化往往需要考虑做更多的事情.首先在移动web的前端页面渲染中,PC的优化规则同样适用,此外针对浏览器也要做一些更细节的优化达到更好的效果.需要注意的是,并不是移动端的优化在PC端不适用,而是由于兼容性的原因,

浅谈流形学习(转)

http://blog.pluskid.org/?p=533 总觉得即使是“浅谈”两个字,还是让这个标题有些过大了,更何况我自己也才刚刚接触这么一个领域.不过懒得想其他标题了,想起来要扯一下这个话题,也是因为和朋友聊起我自己最近在做的方向.Manifold Learning 或者仅仅 Manifold 本身通常就听起来颇有些深奥的感觉,不过如果并不是想要进行严格的理论推导的话,也可以从许多直观的例子得到一些感性的认识,正好我也就借这个机会来简单地谈一下这个话题吧,或者说至少是我到目前为止对这它的

浅谈流形学习

转载自:http://blog.pluskid.org/?p=533 总觉得即使是“浅谈”两个字,还是让这个标题有些过大了,更何况我自己也才刚刚接触这么一个领域.不过懒得想其他标题了,想起来要扯一下这个话题,也是因为和朋友聊起我自己最近在做的方向.Manifold Learning 或者仅仅 Manifold 本身通常就听起来颇有些深奥的感觉,不过如果并不是想要进行严格的理论推导的话,也可以从许多直观的例子得到一些感性的认识,正好我也就借这个机会来简单地谈一下这个话题吧,或者说至少是我到目前为止

浅谈 Python 的 with 语句

浅谈 Python 的 with 语句 王 生辉 和 李 骅宸2011 年 12 月 02 日发布 WeiboGoogle+用电子邮件发送本页面 3 引言 with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导入后才可以使用),从 2.6 版本开始缺省可用(参考 What's new in Python 2.6? 中 with 语句相关部分介绍).with 语句适用于对资源

【转载】李航博士的《浅谈我对机器学习的理解》 机器学习与自然语言处理

李航博士的<浅谈我对机器学习的理解> 机器学习与自然语言处理 [日期:2015-01-14] 来源:新浪长微博  作者: 李航 [字体:大 中 小] 算算时间,从开始到现在,做机器学习算法也将近八个月了.虽然还没有达到融会贯通的地步,但至少在熟悉了算法的流程后,我在算法的选择和创造能力上有了不小的提升.实话说,机器学习很难,非常难,要做到完全了解算法的流程.特点.实现方法,并在正确的数据面前选择正确的方法再进行优化得到最优效果,我觉得没有个八年十年的刻苦钻研是不可能的事情.其实整个人工智能范畴

浅谈SQL Server中的事务日志(三)----在简单恢复模式下日志的角色

浅谈SQL Server中的事务日志(三)----在简单恢复模式下日志的角色 本篇文章是系列文章中的第三篇,前两篇的地址如下: 浅谈SQL Server中的事务日志(一)----事务日志的物理和逻辑构架 浅谈SQL Server中的事务日志(二)----事务日志在修改数据时的角色 简介 在简单恢复模式下,日志文件的作用仅仅是保证了SQL Server事务的ACID属性.并不承担具体的恢复数据的角色.正如”简单”这个词的字面意思一样,数据的备份和恢复仅仅是依赖于手动备份和恢复.在开始文章之前,首先