《University Calculus》-chape6-定积分的应用-求体积

定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积。

方法1:切片法。

这里由于处理的方法思想和典型的离散的黎曼和到连续的积分的过程类似,因此这里不再重复推导,直接给出如何应用以及实例。

基于这条定理,我们能够直接介绍一下卡瓦列里原理。卡瓦列里原理表明,高度相同并且在每个高度上的横截面积相同的几何体的体积相同,直观的理解,就像下面这两堆“叠硬币”图。

下面我们看一些实例。

利用这种方法的计算体积具有较为严苛的限制,其中最重要的一点是,这个不规则几何体的横截面A(x)是典型的几何图形,利用这种方法计算体积能够归纳成如下的算法流程:

  1. 画出立体和典型的横截面草图
  2. 求典型横截面面积A(x)
  3. 求积分限
  4. 利用微积分基本定理求A(x)的积分

那么对于这个例子,基于草图的基础上,能够列出如下的定积分式:

再来看一个稍微有挑战性的图。

选择横截面是有技巧的,一个关键原则是选择的这个横截面沿积分变量所在的坐标轴移动的时候,横截面需要一直保持是典型平面图形的形式。依旧将x作为积分变量,则横截面A(x)是矩形,于是我们能够列出如下的式子:

方法2:

处理旋转体的圆盘方法。

其实这种方法本质上讲是一种处理旋转体的切片法。在介绍这种方法之前,有必要先介绍一下什么是旋转体:将某平面图形绕坐标轴旋转一周形成的空间几何体我们称之为旋转体。

旋转体非常的有规律可循,假设我们旋转是曲线f(x)和x轴围成的曲边梯形,我们能够发现,将x视为积分变量,横截面处处是典型的图形——圆,而半径恰好可以通过曲线f(x)给出。

让我们看几个实例。

容易列出如下的定积分式。

时间: 2024-10-05 15:43:33

《University Calculus》-chape6-定积分的应用-求体积的相关文章

《University Calculus》-chape5-积分法-微积分基本定理

定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉了我们积分的计算方法. 微积分基本定理: 能够看到,正是基于这样一个基本定理,我们才能够找到积分的计算方法,从这个角度就可以充分的理解为什么求积分的过程实际上是一个求“反导数”(求导的逆运算)的过程了.

《University Calculus》-chaper13-多重积分-二重积分的引入

这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f(x),对f(x)求解一次定积分即可.其方法就是先微分(将自变量区间划分为n个区间段),引入极限的概念(即使得n趋向无穷)之后使得我们能够“化曲为直”,然后利用矩形的面积公式进行求解.随后是积分过程,将这n个小矩形相加求极限,可得曲边梯形的面积. 如下几图使得这个过程更加的直观. Sp又叫做,f(x

《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

《University Calculus》-chape6-定积分的应用-平面曲线长度

平面曲线的长度: 积分的重要作用体现在处理曲线和曲面. 在这里我们讨论平面中一条用参数形式表达的曲线:x=f(t),y=g(t),a≤t≤b. 如图.

《University Calculus》-chaper8-无穷序列和无穷级数-比值审敛法

在分析等比级数的过程中,我们发现对于q<1的等比级数是收敛的,它表示级数每一项与它前一项的比值小于1,我们能否将这种方法推广起来用于一般级数的审敛呢? 从极限的定义出发:

《University Calculus》-chape3-微分法-基本概念、定理

所谓微分法其实就是我们所熟悉的导数,它是一种无限分割的方法,同积分法一样,它们是处理曲线和曲面的有利工具,也是一门很伟大的自然语言.微分方程就是一种名副其实的描述自然的语言. 同样这里如果取单侧导数,那么能够证明该点单侧具有连续型.通过原命题与逆否命题的等价性我们也能够看到,函数在某处不连续,在该处必然不可导.

《University Calculus》-chape4-导数的应用-极值点的二阶导数检验法

函数凹凸性检验: 很容易看到,观察类似抛物线这类曲线,能够看到它们有一个向上凹或者向下凹的这样一个过程,而我们将这个过程细化并观察一系列点的导数的变化情况我们给出如下的定义: (1)如果函数图像在区间I上向上凹,则f’(x)在区间I上递增. (2)如果函数图像在区间I上向下凹,则f’(x)在区间I上递减. 局部极值二阶导数检验法: 证明:回想起我们最原始判断极值的方法,我们要考察极值点两侧导数的正负,对于(1),在c两侧取x=x0,x1应有f’(x0)<0,f’(x0)=0,f’(x1)>0,

《University Calculus》-chape10-向量与空间几何学-向量夹角

点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? 它其实来源于如下的定理(这里的定理和证明过程以三维向量为例,对于二维向量,可做完全一致的推导): 证明: 考虑在如下的一个三角形中. 通过这个定理的证明过程就能够理解:为什么我们求向量夹角用点积:两个向量之间的点积为什么等于两个向量模长再乘以夹角的余弦值:为什么我们求出来的角是起点重合的两个向量夹

《University Calculus》-chape12-偏导数-基本概念

偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等值曲线): 一元函数的定义域在x轴上,函数图像在xoy面上:二元函数的定义域在xoy面上,函数图像在空间当中,而三元函数的定义域对应着空间的集合体.这里面对二元.三元函数我们有一个最基本的问题,就是勾勒出它们的大致图像,虽然目前有数学软件可以较为快速准确的描绘出函数的图像,但是掌握一定的确定函数图像