Hough transform(霍夫变换)

主要内容:

1、Hough变换的算法思想

2、直线检测

3、圆、椭圆检测

4、程序实现

一、Hough变换简介

Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。

霍夫变换于1962年由Paul Hough 首次提出[53],后于1972年由Richard Duda和Peter Hart推广使用[54],经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。

1.1 直线检测

设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。

简而言之,Hough变换思想为:在原始图像坐标系下的一个点对应了参数坐标系中的一条直线,同样参数坐标系的一条直线对应了原始坐标系下的一个点,然后,原始坐标系下呈现直线的所有点,它们的斜率和截距是相同的,所以它们在参数坐标系下对应于同一个点。这样在将原始坐标系下的各个点投影到参数坐标系下之后,看参数坐标系下有没有聚集点,这样的聚集点就对应了原始坐标系下的直线。

在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p---theta平面上的一条曲线上,其它的还是一样。

上图(a)所示为原始的图像空间中一个点;(b)所示为直角坐标系当中为过同一四条直线;(c)所示为这四条直线在极坐标参数空间可以表示为四个点

为了检测出直角坐标X-Y中由点所构成的直线,可以将极坐标a-p量化成许多小格。根据直角坐标中每个点的坐标(x,y),在a = 0-180°内以小格的步长计算各个p值,所得值落在某个小格内,便使该小格的累加记数器加1。当直角坐标中全部的点都变换后,对小格进行检验,计数值最大的小格,其(a,p)值对应于直角坐标中所求直线。

思路解析:

1)读取一幅带处理二值图像,最好背景为黑色;

2)获取图像空间的源像素数据;

3)通过量化霍夫参数空间为有限个值间隔等分或者累加格子,即p,theta;

4)霍夫变换算法开始,每个像素坐标点P(x, y)被转换到(r, theta)的曲线点上面,并累加到对应的格子数据点;

5)寻找最大霍夫值,设置阈值,反变换到图像空间;

实际应用例子:车道检测

1.2 已知半径的圆

其实Hough变换可以检测任意的已知表达形式的曲线,关键是看其参数空间的选择,参数空间的选择可以根据它的表达形式而定。比如圆的表达形式为 ,所以当检测某一半径的圆的时候,可以选择与原图像空间同样的空间作为参数空间。那么圆图像空间中的一个圆对应了参数空间中的一个点,参数空间中的一个点对应了图像空间中的一个圆,圆图像空间中在同一个圆上的点,它们的参数相同即ab相同,那么它们在参数空间中的对应的圆就会过同一个点(ab),所以,将原图像空间中的所有点变换到参数空间后,根据参数空间中点的聚集程度就可以判断出图像空间中有没有近似于圆的图形。如果有的话,这个参数就是圆的参数。

1.3 未知半径的圆

对于圆的半径未知的情况下,可以看作是有三个参数的圆的检测,中心和半径。这个时候原理仍然相同,只是参数空间的维数升高,计算量增大。图像空间中的任意一个点都对应了参数空间中的一簇圆曲线。 ,其实是一个圆锥型。参数空间中的任意一个点对应了图像空间中的一个圆。

1.4 椭圆

椭圆有5个自由参数,所以它的参数空间是5维的,因此他的计算量非常大,所以提出了许多的改进算法。

二、程序实现

  对于处理一般图像,需要对图像进行边缘检测和二值化处理,Hough变换的输入是黑白二值图像。

  matlab:

  http://www.mathworks.cn/cn/help/images/ref/hough.html

  openCV:

  http://blog.csdn.net/ccxcau/article/details/7816588

三、总结

  图像空间中的在同一个圆,直线,椭圆上的点,每一个点都对应了参数空间中的一个图形,在图像空间中这些点都满足它们的方程这一个条件,所以这些点,每个投影后得到的图像都会经过这个参数空间中的点。也就是在参数空间中它们会相交于一点。所以,当参数空间中的这个相交点的越大的话,那么说明元图像空间中满足这个参数的图形越饱满。越象我们要检测的东西。

  Hough变换能够查找任意的曲线,只要你给定它的方程。Hough变换在检验已知形状的目标方面具有受曲线间断影响小和不受图形旋转的影响的优点,即使目标有稍许缺损或污染也能被正确识别。

四、参考文献:

http://blog.csdn.net/icerain_3321/article/details/1665280

http://blog.csdn.net/abcjennifer/article/details/7448513

http://blog.csdn.net/carson2005/article/details/6568414

http://blog.csdn.net/ccxcau/article/details/7816588

http://hi.baidu.com/tangsu2009/item/88475289bb40035a840fabda

Hough transform(霍夫变换)

时间: 2024-12-15 01:59:43

Hough transform(霍夫变换)的相关文章

灰度图像--图像分割 霍夫变换(Hough Transform)--直线

学习DIP第50天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 开篇废话 废话开始,要过年了,到处人心惶惶,沉下心写篇博客,下一篇就等农历新年以后了.马上新年了,希望自己在新年能提高技术,找到一份图像处理的好工作,也希望大家都能学习到更多的知识,做自己喜欢做的事情. 以前基本每天都写博客,坚持了三个月感觉确实有提

Hough Transform直线检测

本文原创,如转载请注明出处. Hough Transform 是一种能提取图像中某种特定形状特征的方法,可以将其描述成一种把图像空间中的像素转换成Hough空间中直线或曲线的一种映射函数.通过利用Hough空间的一些性质,我们可以找到并识别一些有共同特性的点(如在同一条直线上).这样我们就得到足够的信息去画出这些图形(如直线).其输入图像通常为二值边缘图像. 1.原理: 图像空间是所有像素所属于的图像的空间.Hough空间是一种变量混合空间,实际上它与图像相关但是却不存在物理实质性. 我们可以把

霍夫变换(hough transform)

x-y轴坐标:y=kx+b k-b轴坐标:b=-xk+y θ-r轴坐标:

霍夫变换

原理简介 霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.最基本的霍夫变换是从黑白图像中检测直线(线段). 1详细内容 我们先看这样一个问题:设已知一黑白图像上画了一条直线,要求出这条直线所在的位置.我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距.过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b.即点(x0,y0)确定了一组直线.方程y0=kx0+b在参数k-

Python+OpenCV图像处理(十四)—— 直线检测

简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变

OpenCV Tutorials —— Hough Line Transform

霍夫直线变换 -- 用于检测图像中的直线 利用图像空间和Hough参数空间的点--直线对偶性,把图像空间中的检测问题转换到参数空间,通过在参数空间进行简单的累加统计,然后在Hough参数空间中寻找累加器峰值的方法检测直线 Standard and Probabilistic Hough Line Transform OpenCV implements two kind of Hough Line Transforms: The Standard Hough Transform It consis

霍夫变换Hough

http://blog.csdn.net/sudohello/article/details/51335237 霍夫变换Hough 霍夫变换(Hough)是一个非常重要的检测间断点边界形状的方法.它通过将图像坐标空间变换到参数空间,来实现直线与曲线的拟合. 1.直线检测 1.1 直线坐标参数空间 在图像x?y坐标空间中,经过点(xi,yi)的直线表示为: yi=axi+b(1) 其中,参数a为斜率,b为截矩. 通过点(xi,yi)的直线有无数条,且对应于不同的a和b值. 如果将xi和yi视为常数

OpenCV Tutorials —— Hough Circle Transform

Hough 圆变换 和 Hough 直线变换原理相同,只是参数空间不同 : In the line detection case, a line was defined by two parameters . In the circle case, we need three parameters to define a circle: where define the center position (gree point) and is the radius, which allows us

学习 opencv---(13)opencv霍夫变换:霍夫线变换,霍夫圆变换

在本篇文章中,我们将一起学习opencv中霍夫变换相关的知识点,以及了解opencv中实现霍夫变换的HoughLines,HoughLinesP函数的使用方法,实现霍夫圆变换的HoughCircles函数的使用方法. 先尝鲜一下其中一个示例程序的运行截图: 一.引言 在图像处理和计算机视觉领域中,如何从当前的图像中提取所需要的特征信息是图像识别的关键所在.在许多应用场合中需要快速准确的检测出直线或者圆.其中一种非常有效的解决问题的方法是霍夫(Hough)变换,其为图像处理中从图像识别几何形状的基