C#中Queue<T>类的使用以及部分方法的源代码分析

Queue<T>类

表示对象的先进先出集合。

队列在按接收顺序存储消息方面很实用,以便于进行顺序处理。 存储在 Queue,<T> 中的对象在一端插入,从还有一端移除。

Queue<T> 的容量是 Queue<T> 能够包括的元素数。 当向 Queue<T> 中加入元素时,将通过又一次分配内部数组来依据须要自己主动增大容量。

可通过调用 TrimExcess 来降低容量。

Queue<T> 接受 null 作为引用类型的有效值而且同意有反复的元素。

命名控件:System.Collections.Generic

程序集:System(在System.dll中)

语法:public class Queue<T>:IEnumerable<T>, ICollection, IEnumerable

List<T>实现了IList<T>、 ICollection<T>、IEnumerable<T>、IList、ICollection、IEnumerable接口

因此能够看出与List<T>相比:

Queue<T>没有继承ICollection<T>接口,由于这个接口定义的Add()和Remove()方法不能用于队列;

Queue<T>没有继承IList<T>接口,所以不能使用索引器訪问队列。

所以队列仅仅同意在队列的尾部加入元素。从队列的头部获取元素。

经常使用的Queue<T>类的成员:

Count : 返回队列中元素的个数。

Enqueue : 在队列一端加入一个元素。

Dequeue() : 从队列的头部读取和删除一个元素。

假设调用Dequeue()时,队列中没有元素就会抛出异常InvalidOperationException异常。

Peek(): 在队列的头部取出一个元素,但不删除它。
TrimExcess():重置队列的容量。

/******************************************************************************************************************************/

经常使用Queue<T>类的成员函数的源代码例如以下:

public T Dequeue()

{

if (this._size == 0)

{

ThrowHelper.ThrowInvalidOperationException(ExceptionResource.InvalidOperation_EmptyQueue);

}

T local = this._array[this._head];

this._array[this._head] = default(T);

this._head = (this._head + 1) % this._array.Length;

this._size--;

this._version++;

return local;

}

public void Enqueue(T item)

{

if (this._size == this._array.Length)

{

int capacity = (int) ((this._array.Length * 200L) / 100L);

if (capacity < (this._array.Length + 4))

{

capacity = this._array.Length + 4;

}

this.SetCapacity(capacity);

}

this._array[this._tail] = item;

this._tail = (this._tail + 1) % this._array.Length;

this._size++;

this._version++;

}

public T Peek()

{

if (this._size == 0)

{

ThrowHelper.ThrowInvalidOperationException(ExceptionResource.InvalidOperation_EmptyQueue);

}

return this._array[this._head];

}

public void TrimExcess()

{

int num = (int) (this._array.Length * 0.9);

if (this._size < num)

{

this.SetCapacity(this._size);

}

}

上诉方法使用到的SetCapacity函数的源代码例如以下:

private void SetCapacity(int capacity)

{

T[] destinationArray = new T[capacity];

if (this._size > 0)

{

if (this._head < this._tail)

{

Array.Copy(this._array, this._head, destinationArray, 0, this._size);

}

else

{

Array.Copy(this._array, this._head, destinationArray, 0, this._array.Length - this._head);

Array.Copy(this._array, 0, destinationArray, this._array.Length - this._head, this._tail);

}

}

this._array = destinationArray;

this._head = 0;

this._tail = (this._size == capacity) ? 0 : this._size;

this._version++;

}

/*****************************************************************************************************************************************/

演示样例:

以下的代码演示样例演示了 Queue<T> 泛型类的几个方法。

此代码演示样例创建一个具有默认容量的字符串队列,并使用 Enqueue 方法对五个字符串进行排队。 枚举队列元素,这不会更改队列的状态。 使用 Dequeue 方法使第一个字符串出列。 使用 Peek 方法查找队列中的下一项。然后使用 Dequeue 方法使该项出列。

使用 ToArray 方法创建一个数组并将队列元素拷贝到该数组,然后将该数组传递给接受 IEnumerable 的 Queue 构造函数以创建队列副本。 将显示副本的元素。

创建一个大小是队列大小两倍的数组,并使用 CopyTo 方法从数组中间開始复制数组元素。 再次使用 Queue1T> 构造函数创建第二个队列副本,此队列在開始处包括三个 null 元素。

使用 Contains 方法显示字符串“four”在第一个队列副本中。然后使用 Clear 方法清除此副本并由 Count 属性显示该队列为空。

using System;

using System.Collections.Generic;

class Example

{

public static void Main()

{

Queue1string> numbers = new Queue1string>();

numbers.Enqueue("one");

numbers.Enqueue("two");

numbers.Enqueue("three");

numbers.Enqueue("four");

numbers.Enqueue("five");

// A queue can be enumerated without disturbing its contents.

foreach( string number in numbers )

{

Console.WriteLine(number);

}

Console.WriteLine("\nDequeuing ‘{0}‘", numbers.Dequeue());

Console.WriteLine("Peek at next item to dequeue: {0}", numbers.Peek());

Console.WriteLine("Dequeuing ‘{0}‘", numbers.Dequeue());

// Create a copy of the queue, using the ToArray method and the

// constructor that accepts an IEnumerable.

Queue1string> queueCopy = new Queue1string>(numbers.ToArray());

Console.WriteLine("\nContents of the first copy:");

foreach( string number in queueCopy )

{

Console.WriteLine(number);

}

// Create an array twice the size of the queue and copy the

// elements of the queue, starting at the middle of the

// array.

string[] array2 = new string[numbers.Count * 2];

numbers.CopyTo(array2, numbers.Count);

// Create a second queue, using the constructor that accepts an

// IEnumerable(Of T).

Queue1string> queueCopy2 = new Queue1string>(array2);

Console.WriteLine("\nContents of the second copy, with duplicates and nulls:");

foreach( string number in queueCopy2 )

{

Console.WriteLine(number);

}

Console.WriteLine("\nqueueCopy.Contains(\"four\") = {0}", queueCopy.Contains("four"));

Console.WriteLine("\nqueueCopy.Clear()");

queueCopy.Clear();

Console.WriteLine("\nqueueCopy.Count = {0}", queueCopy.Count);

}

}

/* This code example produces the following output:

one

two

three

four

five

Dequeuing ‘one‘

Peek at next item to dequeue: two

Dequeuing ‘two‘

Contents of the copy:

three

four

five

Contents of the second copy, with duplicates and nulls:

three

four

five

queueCopy.Contains("four") = True

queueCopy.Clear()

queueCopy.Count = 0

*/

时间: 2024-11-03 15:51:06

C#中Queue&lt;T&gt;类的使用以及部分方法的源代码分析的相关文章

String源码分析之Java中的String为什么是不可变的以及replace方法源码分析

什么是不可变对象? 众所周知, 在Java中, String类是不可变的.那么到底什么是不可变的对象呢? 可以这样认为:如果一个对象,在它创建完成之后,不能再改变它的状态,那么这个对象就是不可变的.不能改变状态的意思是,不能改变对象内的成员变量,包括基本数据类型的值不能改变,引用类型的变量不能指向其他的对象,引用类型指向的对象的状态也不能改变. 区分对象和对象的引用 对于Java初学者, 对于String是不可变对象总是存有疑惑.看下面代码: String s = "ABCabc";

openstack中运行定时任务的两种方法及源代码分析

启动一个进程,如要想要这个进程的某个方法定时得进行执行的话,在openstack有两种方式: 一种是通过继承 periodic_task.PeriodicTasks,另一种是使用loopingcall.py,针对两种方式分别说一下实现原理. (1) 继承periodic_task.PeriodicTasks 这种方式比较复杂,用到了python中的一些比较高级的特性,装饰器和元类:首先看一下periodic_task.py,在nova/openstack/common中,其他组件也有. 看一下P

ArcGIS Engine问答:为什么地理数据库中不能产生同名要素类

之所以产生这样的问题,其原因是无论一个要素类是直接放在工作空问中,还是放在工作空问的一个要素数据集中,这些差别仅仅是逻辑上的,而它们的物理组成都是数据库中的一张二维表,并目表名就是要素类的名字,在一个数据库中不能出现两个同名的二维表,因此也就不能产生两个同名的要素类. 也就是说如果在工作空问中存在一个名为A的要素类和B的要素数据集,B中如果再产生一个名为A的要素类是不会成功的. 因此可以使用IFeatureWorkspace::OpenFeatureClass方法可以打开工作空问中的任何一个要素

ios 中Category类别(扩展类)专题总结

原创地址   http://www.code4blog.com/archives/294 类别 类别是一种为现有的类添加新方法的方式. 利用Objective-C的动态运行时分配机制,可以为现有的类添加新方法,这种为现有的类添加新方法的方式称为类别catagory,他可以为任何类添加新的方法,包括那些没有源代码的类. 类别使得无需创建对象类的子类就能完成同样的工作 一.创建类别 1.声明类别 声明类别与声明类的形式很相似 @interface  NSString(NumberConvenienc

java中常用的包、类、以及包中常用的类、方法、属性-----io包

由于最近有需要,所以下面是我整理的在开发中常用的包.类.以及包中常用的类.方法.属性:有需要的看看 java中常用的包.类.以及包中常用的类.方法.属性 常用的包 java.io.*; java.util.*; java.lang.*; java.math.*; java.sql.*; java.text.*; java.awt.*; javax.swing.*;   包名 接口 类 方法 属性 java.io.*; java.io.Serializable实现序列化 java.io.Buffe

Python中父类和子类间类属性(非实例属性)的设置获取的传递

前几天做一个项目,遇见类似这样一个问题.父类是个公用类,很多子项目中都运用到了,而子类也要作为一个基本类在该项目中的很多地方都要用到,但是的原始父类里面有些类属性(注意这里是类属性,不是实力属性).在程序运行时候要进行重新设置. 背景:Python中父类的类属性,类方法,实力属性都能够被子类继承,实力属性的再设置很简单,当然为了控制类属性的访问权限(Python中不能完全实现控制),也可以用@preproty装饰符优化和控制实力属性的设置,父类的类属性被子类继承,可以很容易的获得父类属性的内容,

java中的URLEncoder和URLDecoder类的联系与区别

今天碰到了这个问题,就查找了些资料总结下:java中的URLEncoder和URLDecoder类的联系与区别. 首先说这两者的联系与区别: URLEncoder是编码,URLDecoder是解码.两者的转换过程刚好是相反的.URLEncoder该类包含了将 String 转换为 application/x-www-form-urlencoded MIME 格式的静态方法:URLDecoder该类包含了将 String 从 application/x-www-form-urlencoded MI

c++中两个头文件定义同名类的解决办法

今天考虑了一个问题,如果两个头文件比如time.h times.h里面都定义了一个time的类,要怎么解决?vs编译器只对cpp文件进行编译,在编译阶段,这两个头文件的实现文件都不会出错,如果不在主函数中用到time这个类,程序也不会有问题.但是如果用到,那就是disaster!!!,如果你不得不在两个头文件中定义同名类,下面是我自己思考出来的最简单的解决方式--->>用不同的作用域包含 #ifndef TIME_H #define TIME_H namespace time1 { class

c语言中字符串操作的工具类

 1.编写头文件 #define _CRT_SECURE_NO_WARNINGS //#pragmawarning(disable:4996) #include <stdio.h> #include <stdlib.h> #include <string.h> struct CString { char *p;        //保存字符串首地址 int reallength; //实际长度 }; typedef struct CString mystring;//