[C++][转]CPU字节序 网络序 主机序 大端小端

原帖:http://www.cnblogs.com/darktime/p/3298075.html

不同的CPU有不同的字节序类型 这些字节序是指整数在内存中保存的顺序 这个叫做主机序
最常见的有两种
1. Little endian:将低序字节存储在起始地址
2. Big endian:将高序字节存储在起始地址

LE little-endian
最符合人的思维的字节序
地址低位存储值的低位
地址高位存储值的高位
怎么讲是最符合人的思维的字节序,是因为从人的第一观感来说
低位值小,就应该放在内存地址小的地方,也即内存地址低位
反之,高位值就应该放在内存地址大的地方,也即内存地址高位

BE big-endian
最直观的字节序
地址低位存储值的高位
地址高位存储值的低位
为什么说直观,不要考虑对应关系
只需要把内存地址从左到右按照由低到高的顺序写出
把值按照通常的高位到低位的顺序写出
两者对照,一个字节一个字节的填充进去

例子:在内存中双字0x01020304(DWORD)的存储方式

内存地址
4000 4001 4002 4003
LE 04 03 02 01
BE 01 02 03 04

例子:如果我们将0x1234abcd写入到以0x0000开始的内存中,则结果为
      big-endian  little-endian
0x0000  0x12      0xcd
0x0001  0x23      0xab
0x0002  0xab      0x34
0x0003  0xcd      0x12
x86系列CPU都是little-endian的字节序.

网络字节顺序是TCP/IP中规定好的一种数据表示格式,它与具体的CPU类型、操作系统等无关,从而可以保证数据在不同主机之间传输时能够被正确解释。网络字节顺序采用big endian排序方式。

主机字节序转换到网络字节序列的原理:
网络字节序列采用低字节在高位的排列方式,
而X86主机字节序列采用低字节在低位的方式
其实只要交换一下就可以实现网络字节序列和主机字节序列的转换,
所以对于上面的函数,htonl和ntohl是一样的。

  1. h host 主机
  2. n net 网络
  3. l long 长整形
  4. s short 短整形
  5. XtoX就是进行数据存储顺序的主机和网络顺序的转换

htonl 和htons分别把无符号长整型和无符号短整型数字转换成TCP/IP协议规定的统一的网络字节序的数字,即大头序。不同体系的计算机存储数字时有些把最 低位放在前面,另一些相反,即所谓大头和小头。数字进入Internet时应先用htonl或htons转换成统一的大头序。

htonl(将32位主机字符顺序转换成网络字符顺序)  
定义函数  unsigned long int htonl(unsigned long int hostlong);
 
函数说明  htonl()用来将参数指定的32位hostlong 转换成网络字符顺序。
 
返回值  返回对应的网络字符顺序。

htons(将16位主机字符顺序转换成网络字符顺序)   
定义函数  unsigned short int htons(unsigned short int hostshort);
 
函数说明  htons()用来将参数指定的16位hostshort转换成网络字符顺序。
 
返回值  返回对应的网络字符顺序。

ntohl(将32位网络字符顺序转换成主机字符顺序)  
定义函数  unsigned long int ntohl(unsigned long int netlong);
 
函数说明  ntohl()用来将参数指定的32位netlong转换成主机字符顺序。
 
返回值  返回对应的主机字符顺序。
 
 
ntohs(将 16位网络字符顺序转换成主机字符顺序)  
 
定义函数  unsigned short int ntohs(unsigned short int netshort);
 
函数说明  ntohs()用来将参数指定的16位netshort转换成主机字符顺序。
 
返回值  返回对应的主机顺序。

比如网络字节 为 00 01

u_short    a;   // a=0100; 因为主机是从高字节到低字节的,所以应该转化后

a=ntohs(0001); //这样 a=0001;

假设你已经有了一个sockaddr_in结构体ina,你有一个IP地址"132.241.5.10" 要储存在其中,你就要用到函数inet_addr(),将IP地址从 点数格式转换成无符号长整型。使用方法如下:
ina.sin_addr.s_addr = inet_addr(“132.241.5.10″);
注意,inet_addr()返回的地址已经是网络字节格式,所以你无需再调用函数htonl()。

 

inet_addr(将网络地址转成二进制的数字)  
定义函数  unsigned long int inet_addr(const char *cp);
 
函数说明  inet_addr()用来将参数cp所指的网络地址字符串转换成网络所使用的二进制数字。网络地址字符串是以数字和点组成的字符串,例如:“163.13.132.68”。
 
返回值  成功则返回对应的网络二进制的数字,失败返回-1。
 
//ntoa:network to ascii

//aton:ascii to network 

inet_aton(将网络地址转成网络二进制的数字)  
定义函数  int inet_aton(const char * cp,struct in_addr *inp);
 
函数说明  inet_aton()用来将参数cp所指的网络地址字符串转换成网络使用的二进制的数字,然后存于参数inp所指的in_addr结构中。
结构 in_addr定义如下
struct in_addr
{
unsigned long int s_addr;
};
 
返回值  成功则返回非0值,失败则返回0。
 
  
 
inet_ntoa(将网络二进制的数字转换成网络地址)  
定义函数  char * inet_ntoa(struct in_addr in);
 
函数说明  inet_ntoa()用来将参数in所指的网络二进制的数字转换成网络地址,然后将指向此网络地址字符串的指针返回。( 将网络地址转换成“.”点隔的字符串格式)
 
返回值  成功则返回字符串指针,失败则返回NULL。

时间: 2024-10-14 10:50:48

[C++][转]CPU字节序 网络序 主机序 大端小端的相关文章

字节序之大端小端

时间:2014.07.18 地点:基地 ----------------------------------------------------------------------------- 一.跨多字节对象 相应跨多字节的程序对象,有两个点:一是这个对象的地址是什么.二是在内存中,这多个字节是怎样存储的.我们知道,多字节对象都是被存储为连续的字节序列,对象的地址即使用字节中最小的那个地址.比方一个int型数据变量x,我们说它的存储地址为0x100,即&x的值为0x100,x是一个4字节对象

大端/小端,高字节/低字节,高地址/低地址,移位运算

其实大端小端的概念比较好理解的,大端:数据的高字节存放在内存的低地址中. 数组的声明方式是从左往右,地址逐渐增大. int8_t a[] = { 1, 2, 3 }; for (int i = 0; i < 3; i++) printf("a[%d]: %p\n", i, &a[i]); a[0]: 0x7ffce52cf290 a[1]: 0x7ffce52cf294 a[2]: 0x7ffce52cf298 int8_t是<stdint.h>定义的跨平台数

linux kernel如何处理大端小端字节序

最近在做将kernel由小端处理器(arm)向大端处理器(ppc)的移植的工作,现在kernel进入console稳定工作,基本工作已经完成,不过移植中有很多心得还是需要总结下,今天先将kernel对于大小端字节序的处理来总结下. 之前写过大小端字节序的思考,文章链接地址:http://blog.csdn.net/skyflying2012/article/details/42065427. 根据之前的理解,字节序可以认为是处理器主观的概念,就像人如何去看待事物一样,处理器分大端和小端,对于内存

主机字节序和网络字节序(大端序,小端序,网络序)

根据cpu的不同我们可以把主机字节序在内存中存储的顺序叫做主机序,也就是我们常说的,大端机和小端机.我们经常看到的有两种: 1.小端机(内存中以小端序存储的机器):将低字节序存储在开始的地址(及内存较小的内存) 2.大端机(内存中以大端序存储的机器):将高字节序存储在开始的的地址 举个例子:我们将内存从左到右排列:在内存中存放0x01020304              2000     2001    2002     2003 小 : 04             03         0

大端模式与小端模式、网络字节顺序与主机字节顺序

大端模式与小端模式 一.概念及详解 在各种体系的计算机中通常采用的字节存储机制主要有两种: big-endian和little-endian,即大端模式和小端模式. 先回顾两个关键词,MSB和LSB: MSB:Most Significant Bit  ------- 最高有效位     LSB:Least Significant Bit ------- 最低有效位 大端模式(big-edian) big-endian:MSB存放在最低端的地址上. 举例,双字节数0x1234以big-endia

大端模式和小端模式 网络字节顺序与主机字节顺序

在 各种计算机体系结构中,对于字节.字等的存储机制有所不同,因而引发了计算机 通信领 域中一个很重要的问题,即通信双方交流的信息单元(比特.字节.字.双字等等)应该以什么样的顺序进行传送.如果不达成一致的规则,通信双方将无法进行正 确的编/译码从而导致通信失败.目前在各种体系的计算机中通常采用的字节存储机制主要有两种:Big-Endian和Little-Endian,下面先从字节序说起.一.什么是字节序字节序,顾名思义字节的顺序,再多说两句就是大于一个字节类型的数据在内存中的存放顺序(一个字节的

大端、小端与网络字节序

大端(Big-Endian),小端(Little-Endian)以及网络字节序的概念在编程中经常会遇到,网络字节序(Network Byte Order)一般是指大端(Big-Endian,对大部分网络传输协议而言)传输,大端小端的概念是面向多字节数据类型的存储方式定义的,小端就是低位在前(低位字节存在内存低地址,字节高低顺序和内存高低地址顺序相同),大端就是高位在前,(其中"前"是指靠近内存低地址,存储在硬盘上就是先写那个字节).概念上字节序也叫主机序. 一.大小端概念 1.首先大小

linux: 讨论一下网络字节序--------大端与小端的差别

数据存储优先顺序的转换 计算机数据存储有两种字节优先顺序:高位字节优先(称为大端模式)和低位字节优先(称为小端模式).内存的低地址存储数据的低字节,高地址存储数据的高字节的方式叫小端模式.内存的高地址存储数据的低字节,低地址存储数据高字节的方式称为大端模式. eg:对于内存中存放的数0x12345678来说(注意,对于数据而言,此处12是高字节,78是低字节:对于地址而言,左边是低地址,右边是高地址) 如果是采用大端模式存放的,则其真实的数是:0x12345678 如果是采用小端模式存放的,则其

如何判断主机是大端还是小端(字节序)

[转帖来自]:http://blog.csdn.net/forestlight/article/details/6933528 今天看<linux程序设计>中关于跨平台需要注意的事项,看到了大端小端的问题.突然想起实验室一同学的笔试题,如何判断主机的大端还是小端. 所谓大端就是指高位值在内存中放低位地址,所谓小端是指低位值在内存中放低位地址.比如0x12345678在大端机上是12345678,在小端机上是78564312,而一个主机是大端还是小端要看cpu类型以及运行在上面的操作系统.同一款