数据结构-各类排序算法总结

各类排序算法总结

一. 排序的基本概念

排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个项值有序的序列。

有 n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…, n 的一种排列p1,p2, …,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。

作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可能不唯一。

实现排序的基本操作有两个:

(1)“比较”序列中两个关键字的大小;

(2)“移动”记录。

若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。

二.插入类排序

1.直接插入排序

直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对 n 个记录的表,可从第二个记录开始直到第 n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。

它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

注意直接插入排序算法的三个要点:

(1)从R[i-1]起向前进行顺序查找,监视哨设置在R[0];

    R[0] = R[i]; // 设置“哨兵”

    for (j=i-1; R[0].key<R[j].key; --j) // 从后往前找

    return j+1; // 返回R[i]的插入位置为j+1

(2)对于在查找过程中找到的那些关键字不小于R[i].key 的记录,可以在查找的同时实现向后移动,即:查找与移动同时进行.

    for (j=i-1; R[0].key<R[j].key; --j)
    {
        R[j+1] = R[j];
    }

(3)i = 2,3,…, n, 实现整个序列的排序(从i = 2开始).

【算法如下】

//C++代码,确保能够运行
void insertionSort(int *R,int length)
{
    for (int i = 2; i <= length; ++i)
    {
        R[0] = R[i];        //设为监视哨

        int j;
        for (j = i-1; R[0] < R[j]; --j)
        {
            R[j+1] = R[j];  //边查找边后移
        }

        R[j+1] = R[0];      // 插入到正确位置
    }
}

【性能分析】

(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。只需R[0]做辅助.

(2)时间效率:向有序表中逐个插入记录的操作,进行了n-1 趟,每趟操作分为比较关键码和移动记录,而比较的次数和移动记录的次数取决于待排序列按关键码的初始排列。

直接插入排序的最好情况的时间复杂度为O(n),平均时间复杂度为O(n^2)。

(3)稳定性:直接插入排序是一个稳定的排序方法。

总体来说:直接插入排序比较适用于带排序数目少,且基本有序的情况下.

2.折半插入排序

直接插入排序的基本操作是向有序表中插入一个记录,插入位置的确定通过对有序表中记录按关键码逐个比较得到的。平均情况下总比较次数约为(n^2)/4。既然是在有序表中确定插入位置,可以不断二分有序表来确定插入位置,即一次比较,通过待插入记录与有序表居中的记录按关键码比较,将有序表一分为二,下次比较在其中一个有序子表中进行,将子表又一分为二。这样继续下去,直到要比较的子表中只有一个记录时,比较一次便确定了插入位置。

折半插入排序是利用折半查找实现“在R[1..i-1]中查找R[i]的插入位置”。

综上:折半插入排序只是减少了比较的次数,因此折半插入排序总的时间复杂度仍是O(n^2).

3.希尔排序

希尔排序又称缩小增量排序,较直接插入排序和折半插入排序方法有较大的改进。直接插入排序算法简单,在 n 值较小时,效率比较高,在 n 值很大时,若序列按关键码基本有序,效率依然较高,其时间效率可提高到O(n)。希尔排序即是从这两点出发,给出插入排序的改进方法。

希尔排序的基本思想是:先将待排序记录序列分割成若干个“较稀疏的”子序列,分别进行直接插入排序。经过上述粗略调整, 整个序列中的记录已经基本有序,最后再对全部记录进行一次直接插入排序。具体实现时,首先选定两个记录间的距离d1,在整个待排序记录序列中将所有间隔为d1 的记录分成一组,进行组内直接插入排序,然后再取两个记录间的距离d2<d1,在整个待排序记录序列中,将所有间隔为d2 的记录分成一组,进行组内直接插入排序,直至选定两个记录间的距离dt=1 为止,此时只有一个子序列,即整个待排序记录序列。

【性能分析】

(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。

(2)时间效率:希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于步长因子序列的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的步长因子序列的方法。步长因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:步长因子中除 1 外没有公因子,且最后一个步长因子必须为1。

O(log2n)~O(n^2)之间的一个值.

(3)稳定性:希尔排序方法是一个不稳定的排序方法。

三.交换类排序

交换排序主要是通过两两比较待排记录的关键码,若发生与排序要求相逆,则交换之。

1.冒泡排序(相邻比较法)

冒泡排序是最简单的一种交换排序。

假设在排序过程中,记录序列R[1..n]的状态为:

则第 i 趟起泡插入排序的基本思想为:借助对无序序列中的记录进行“交换”的操作,将无序序列中关键字最大的记录“交换”到R[n-i+1]的位置上。

【算法如下】

//C++代码
void bubbleSort(int *R,int length)
{
    bool change = true;

    for (int i = 0; i != length-1 && change; ++i)
    {
        change = false;

        for (int j = 0; j != length-i-1; ++j)
        {
            if (R[j] > R[j+1])  //如果相邻元素中大者在前,交换之
            {
                int temp = R[j];
                R[j] = R[j+1];
                R[j+1] = temp;

                change = true;
            }
        }
    }
}

【性能分析】

(1)空间效率:仅用了一个辅助单元,空间复杂度为O(1)。

(2)时间效率:最好情况的时间复杂度为O(n),平均时间复杂度为O(n^2)。

(3)稳定性:冒泡排序法是一种稳定的排序方法

总比较次数

数据结构-各类排序算法总结

时间: 2024-12-26 14:59:21

数据结构-各类排序算法总结的相关文章

数据结构-各类排序算法总结[结局]

各类排序算法总结 五.分配类排序->基数排序: 基数排序是一种借助于多关键码排序的思想,是将单关键码按基数分成"多关键码"进行排序的方法.基数排序属于"低位优先"排序法,通过反复进行分配与收集操作完成排序. 对于数字型或字符型的单关键字,可以看成是由多个数位或多个字符构成的多关键字, 此时可以采用这种"分配-收集"的办法进行排序,称作基数排序法.其好处是不需要进行关键字间的比较. 例如:对下列这组关键字{278, 109, 063, 930

数据结构-各类排序算法总结[续]

各类排序算法总结 三.交换类排序[接上] 2.快速排序 快速排序是通过比较关键码.交换记录,以某个记录为界(该记录称为支点),将待排序列分成两部分.其中,一部分所有记录的关键码大于等于支点记录的关键码,另一部分所有记录的关键码小于支点记录的关键码.我们将待排序列按关键码以支点记录分成两部分的过程,称为一次划分.对各部分不断划分,直到整个序列按关键码有序. 如果每次划分对一个元素定位后,该元素的左侧子序列与右侧子序列的长度相同,则下一步将是对两个长度减半的子序列进行排序,这是最理想的情况! [算法

数据结构—各类‘排序算法’实现(上)

数据结构中的排序算法分为比较排序,非比较排序.比较排序有插入排序.选择排序.交换排序.归并排序,非比较排序有计数排序.基数排序.下面是排序的具体分类: 1.直接排序 主要思想:使用两个指针,让一个指针从开始,另一个指针指向前一个指针的+1位置,两个数据进行比较 void InsertSort(int* a, size_t size) {      assert(a);      for (size_t i = 0; i < size - 1; i++)      {           int 

数据结构—各类‘排序算法’实现(下)

在上一篇博客中,主要是实现各种的排序算法,并针对一些算法进行了优化的处理,下面主要讨论一下非比较排序的算法(计数排序.基数排序),同时并对各种排序算法的性能.时间复杂度.空间复杂度.优缺点.以及适用场景做总结分析. 1.计数排序 主要思想:主要是需要统计次数,使用直接定址法,统计最大数和最小数,开辟两个数相差的空间大小,对于重复数据,使用count用来计数,时间复杂度O(N+范围个数),空间复杂度O(范围个数)计数排序适合于数据较为密集的情况,当数据密集且没有重复的数据,可以直接使用'位图',更

(转)各类排序算法总结

各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个项值有序的序列. 有 n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n.通过排序,要求找出当前下标序列1,2,…, n 的一种排列p1,p2, …,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{R

【数据结构】——排序算法——3.1、选择排序

      [数据结构]--排序算法--3.1.选择排序 一.先上维基的图: 分类 排序算法 数据结构 数组 最差时间复杂度 О(n2) 最优时间复杂度 О(n2) 平均时间复杂度 О(n2) 最差空间复杂度 О(n) total, O(1)auxiliary 二.描述: 选择算法算是最直观的一个了.每次在队列里抽取一个极大(或极小)值进行排列.每次都需要遍历未被抽取的元素队列. 三.Java程序: static void selection_sort(int[] unsorted) { for

【数据结构】——排序算法——1.1、直接插入排序

插入算法很多,无论是在内功修炼,各种笔试面试都是相当有用的.接下来,将陆续将各种排序算法进行练习: 主要分为以下几个部分(其他后面学习补充): 一.插入类排序:1.直接插入排序:2.折半插入排序:3.希尔shell排序: 二.交换类排序:1.冒泡排序 :2.快速排序: 三.选择类排序:1.简单选择: 2.堆排序: 本人多使用Java--开始吧! 首先推荐1.维基百科<排序算法>词条,图文并茂,很形象!2.学习博文<维基百科上的算法和数据结构链接很强大>,资料很多,保存学习! [数据

复习数据结构:排序算法(一)——插入排序

从这一篇开始,计划复习一下数据结构的基本知识.一来是为了开年之后的找工作,二来是为了想提升自己的编程能力.由于这些数据结构知识点,之前都学习过,这里我们就提炼出每个知识点的核心,以及代码实现. 这篇先说排序算法中的插入排序. 插入排序是一种稳定排序算法,属于内排序.适合少量数据量的排序. 当输入数组已经排好序时,插入排序需要O(n),快排需要O(n^2). 当输入数组倒序排列时,插入排序时复为:O(n^2). 平均时间复杂度:O(n^2). 代码实现如下: #include<iostream>

Java中的数据结构及排序算法

(明天补充) 主要是3种接口:List Set Map List:ArrayList,LinkedList:顺序表ArrayList,链表LinkedList,堆栈和队列可以使用LinkedList模拟 Set:HashSet没有重复记录的集合 Map:HashMap就是哈希表 Collection ├List │├LinkedList │├ArrayList │└Vector │ └Stack └Set Map ├Hashtable ├HashMap └WeakHashMap 数据结构参考链接