(并查集) bzoj 1161

【bzoj1116】[POI2008]CLO

2014年5月13日3470

Description

Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度

Input

第一行输入n m.1 <= n<= 100000,1 <= m <= 200000 下面M行用于描述M条边.

Output

TAK或者NIE 常做POI的同学,应该知道这两个单词的了…

Sample Input

4 5
1 2
2 3
1 3
3 4
1 4

Sample Output

TAK

上图给出了一种连接方式.

题解

这题令我突然想到了scoi游戏

首先我们可以推出一个性质,当且仅当某一个连通块中没有环存在输出NIE

于是我们可以用并查集把这题水过。。

给每个连通块的根一个标记

合并俩个连通块时只要任意一个连通块带有标记新的连通块就带有标记

如果一条边的俩个点已经在同一个连通块内了,直接将根打上标记即可

然后最后扫一遍,如果哪个连通块没有标记的话输出NIE

否则最后输出TAK

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
using namespace std;
int n,m,fa[100005],mark[100005];
int find(int x)
{
    if(x!=fa[x])
        fa[x]=find(fa[x]);
    return fa[x];
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        fa[i]=i;
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        int fx,fy;
        fx=find(x),fy=find(y);
        if(fx!=fy)
        {
            fa[fx]=fy;
            mark[fy]=mark[fy]|mark[fx];
        }
        else
            mark[fy]=1;
    }
    for(int i=1;i<=n;i++)
    {
        if(!mark[find(i)])
        {
            printf("NIE\n");
            return 0;
        }
    }
    printf("TAK\n");
    return 0;
}

  

时间: 2024-10-25 03:31:58

(并查集) bzoj 1161的相关文章

[CDQ分治 并查集] BZOJ 3237 [Ahoi2013]连通图

考虑CDQ分治 把这半边对后半边没有影响的操作做了 然后分治 用并查集维护 开个栈暴力还原 #include<cstdio> #include<cstdlib> using namespace std; inline char nc() { static char buf[100000],*p1=buf,*p2=buf; if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; } re

(带权并查集) bzoj 1202

1202: [HNOI2005]狡猾的商人 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1745  Solved: 837[Submit][Status][Discuss] Description 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i=1,2,3...n-1,n), .当 Ai大于0时表示这个月盈利Ai 元,当 Ai小于0时表示这个月亏损Ai 元

BZOJ 1050 旅行comf(枚举最小边-并查集)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1050 题意:给出一个带权图.求一条s到t的路径使得这条路径上最大最小边的比值最小? 思路:将边排序.枚举最小边,然后将边一个一个插到并查集里,s和t联通时计算更新答案. struct node { int u,v,w; void get() { RD(u,v,w); } }; int cmp(node a,node b) { return a.w<b.w; } int n,m,s,t;

BZOJ 3038 上帝造题的七分钟2 (并查集+树状数组)

题解:同 BZOJ 3211 花神游历各国,需要注意的是需要开long long,还有左右节点需要注意一下. #include <cstdio> #include <cmath> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; LL a[100005],c[100005]; int f[100005],n,m,op,l,r,t; int s

BZOJ 3562: [SHOI2014]神奇化合物 并查集+dfs

点击打开链接 注意到20w条边,但是询问只有1w,所以有很多边是从头到尾不变的. 首先离线处理,将从未删除的边缩点,缩点后的图的点数不会超过2w,对于每一次add或者delete,直接dfs看是否能从a走到b,然后维护一个ans. 数据不强,不然这种复杂度起码要跑10s.. #include<stdio.h> #include<iostream> #include<algorithm> #include<cstring> using namespace st

BZOJ 3674 可持久化并查集加强版(主席树变形)

3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Status][Discuss] Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2*10^4 Input Output Sample Inp

BZOJ 3211 花神游历各国 (树状数组+并查集)

题解:首先,单点修改求区间和可以用树状数组实现,因为开平方很耗时间,所以在这个方面可以优化,我们知道,开平方开几次之后数字就会等于1 ,所以,用数组记录下一个应该开的数,每次直接跳到下一个不是1的数字进行开平方,至于这个数组,可以用并查集维护. #include <cstdio> #include <cmath> #include <iostream> using namespace std; typedef long long LL; LL c[100005]; in

bzoj 2733 永无乡 - 并查集 - 线段树

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛.如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的.现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥.Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输

BZOJ 1370: [Baltic2003]Gang团伙(luogu 1892)(种类并查集)

题面: bzoj题面有误,还是看luogu的吧 https://www.luogu.org/problemnew/show/P1892 题解: 种类并查集.. 因为有敌人的敌人是朋友这个条件,所以需要一个中转点.. 因此,将每个点拆成两个点,一个是朋友点,另一个是敌人点.当读到A与B是朋友时,就将A与B所对应的朋友点并集:当读到两个点是敌人的时候,就将A点所对应的敌人点与B所对应的朋友点并集,将A所对应的朋友点和B所对应的敌人点并集. 代码: #include<bits/stdc++.h> u