如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题。简单做一个区分,分类就是离散的数据,回归就是连续的数据。

非监督学习:同样,给了样本,但是这个样本是只有数据,但是没有其对应的结果,要求直接对数据进行分析建模。

比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别(比如哪些更朦胧一点,哪些更写实一些,即使我们不知道什么时候叫做朦胧派,什么叫做写实派,但是至少我们能够把它们分为两类)。无监督学习里面典型的例子就是聚类,聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么,因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。

“再比如,买房的时候,给了房屋面积以及其对应的价格,进行分析,这个就叫做监督学习;但是给了面积,没有给价格,就叫做非监督学习。监督,意味着给了一个标准作为‘监督‘ (或者理解为限制)。就是说建模之后是有一个标准用来衡量你的对与错;非监督就是没有这个标准,对数据进行聚类之后,并没有一个标准进行对其的衡量。”

时间: 2024-10-11 01:39:54

如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)的相关文章

andrew ng machine learning week8 非监督学习

聚类——无监督学习的一种算法 K-means算法 最为广泛使用的聚类算法 选择两个聚类中心 簇分配:根据每个样本更接近哪个聚类中心进行样本的分配 簇中心移动:计算出所有的红点类的均值点,移动原始聚类中心到这个点,蓝点类同理 进行不断地迭代直到收敛 输入:K个簇类和训练集样本数据 注意:不需要X0项,为n维向量 算法的描述: 如果最终有个簇中心没有任何点分配给他那么直接移除就可以 K-means常常适用于右侧这种看不出来结构的混乱的数据的聚类的,所以并不是都是左图如此理想的环境 最优化的目标函数

Machine Learning — 监督学习与非监督学习

斯坦福大学的Machine Learning课程(讲师是Andrew Ng)公开课是学习机器学习的"圣经",以下内容是听课笔记. 一.何谓机器学习 Machine Learning is field of study that gives computers the ability to learn without being explicitly programmed. 也就是说机器学习不需要制定具体的模型,而是让计算机根据庞大的数据量自己训练模型,与之相对的,例如CFD软件,是建立

监督学习、 非监督学习、 半监督学习

在机器学习(Machine learning)领域,主要有三类不同的学习方法: 监督学习(Supervised learning). 非监督学习(Unsupervised learning). 半监督学习(Semi-supervised learning), 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类.非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数. 一.监督

Machine learning —Machine learning :分类和聚类,监督学习和非监督学习

印象笔记同步分享:Machine Learning-分类和聚类,监督学习和非监督学习

Machine Learning——Unsupervised Learning(机器学习之非监督学习)

前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习.无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构.因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案.这区别于监督学习和强化学习无监督学习. 无监督学习是密切相关的统计数据密度估计的问题.然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术.在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法. 我们来看两张图片: 从图中我们可以看到:非监督学习中没有任何的标签或者是有相同的标签或者

Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components

监督学习与非监督学习的区别

以下是摘抄自知乎上对监督学习与非监督学习的总结,觉得写得很形象,于是记下: 这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label).输入数据有标签,则为有监督学习,没标签则为无监督学习 首 先看什么是学习(learning)?一个成语就可概括:举一反三.此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题 目,懂解题方法,因此考场上面对陌生问题也可以算出答案.机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),

什么是监督学习非监督学习,强化学习

机器学习按照学习方式的不同,分为很多的类型,主要的类型分为 监督学习 非监督学习 强化学习 半监督学习 什么是监督学习? 利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练. 正如下图中给出了好多鸭子的特征那样,指示出那些是鸭子哪些不是鸭子,然后让计算机进行学习,计算机要通过学习才能具有识别各种事物和现象的能力. 用来进行学习的材料就是与被识别对象属于同类的有限数量样本,在本例子中指的是哪些选择的鸭子. 除此之外,监督学习中在给予计算机学习样本的同时,还告诉计算各个

5.1_非监督学习之sckit-learn

非监督学习之k-means K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型.算法执行的过程分为4个阶段. 1.首先,随机设K个特征空间内的点作为初始的聚类中心. 2.然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心. 3.接着,在所有的数据都被标记过聚类中心之后,根据这些数据新分配的类簇,通过取分配给每个先前质心的所有样本的平均值来创建新的质心重,新对K个聚类中心做计算. 4.最后,计算旧和新质心之间的差异