Machine Learning——Unsupervised Learning(机器学习之非监督学习)

  前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习。无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。

  无监督学习是密切相关的统计数据密度估计的问题。然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术。在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法。

  我们来看两张图片:

  从图中我们可以看到:非监督学习中没有任何的标签或者是有相同的标签或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。别的都不知道,就是一个数据集。针对数据集,无监督学习就能判断出数据有两个不同的聚集簇。 这是一个,那是另一个,二者不同。无监督学习算法可能会把这些数据分成两个不同的簇。所以叫做聚类算法。事实证明,它能被用在很多地方。

  聚类应用的一个例子就是在百度新闻中。如果你以前从来没见过它,你可以到这个 URL 网址http://news.baidu.com/去看看。百度新闻每天都在,收集非常多,非常多的网络的新闻内容。 它再将这些新闻分组,组成有关联的新闻。所以百度新闻做的就是搜索非常多的新闻事件, 自动地把它们聚类到一起。所以,这些新闻事件全是同一主题的,所以显示到一起。

从这张网页截图中可以看到,百度新闻收集了大量的新闻,然后把他们聚成不同的类,例如:房产,互联网......在每个大类(大标签)下,又聚成了不同的小类。

  我们再看一个例子:一个 DNA 微观数据的例子。

其基本思想是输入一组不同个体,对其中的每个个体,你要分析出它们是否有一个特定的基因。技术上,你要分析多少特定基因已经表达。所以这些颜色,红,绿,灰等等颜色,这些颜色展示了相应的程度,即不同的个体是否有着一个特定的基因。你能做的就是运行一个聚类算法,把个体聚类到不同的 类或不同类型的组(人)……

  所以这个就是无监督学习,因为我们没有提前告知算法一些信息,比如,这是第一类的人,那些是第二类的人,还有第三类,等等。我们只是说,这是有一堆数据。我不知道数据里面有什么,我不知道谁是什么类型,我甚至不知道人们有哪些不同的类型,这些类型又是什么。但你能自动地找到数据中的结构吗?就是说你要自动地聚类那些个体到各个类,我没法提前知道哪些是哪些。因为我们没有给算法正确答案来回应数据集中的数据,这就是无监督学习。

时间: 2024-12-10 00:17:25

Machine Learning——Unsupervised Learning(机器学习之非监督学习)的相关文章

机器学习之非监督学习与强化学习

非监督式学习: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQ3NjQ2NA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" > 在此学习方式下.输入数据部分被标识,部分没有被标识,这样的学习模型能够用来进行预測,可是模型首先须要学习数据的内在结构以便合理的组织数据来进行预測.应用场景包含分类和回归,算法包含一些对经常使用监督

Unsupervised learning, attention, and other mysteries

Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of Machine Intelligence: Perspectives from Leading Practitioners” is available for download. The following interview is one of many that will be included

Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components

Machine Learning — 监督学习与非监督学习

斯坦福大学的Machine Learning课程(讲师是Andrew Ng)公开课是学习机器学习的"圣经",以下内容是听课笔记. 一.何谓机器学习 Machine Learning is field of study that gives computers the ability to learn without being explicitly programmed. 也就是说机器学习不需要制定具体的模型,而是让计算机根据庞大的数据量自己训练模型,与之相对的,例如CFD软件,是建立

Machine learning —Machine learning :分类和聚类,监督学习和非监督学习

印象笔记同步分享:Machine Learning-分类和聚类,监督学习和非监督学习

如何区分监督学习(supervised learning)和非监督学习(unsupervised learning)

监督学习:简单来说就是给定一定的训练样本(这里一定要注意,样本是既有数据,也有数据对应的结果),利用这个样本进行训练得到一个模型(可以说是一个函数),然后利用这个模型,将所有的输入映射为相应的输出,之后对输出进行简单的判断从而达到了分类(或者说回归)的问题.简单做一个区分,分类就是离散的数据,回归就是连续的数据. 非监督学习:同样,给了样本,但是这个样本是只有数据,但是没有其对应的结果,要求直接对数据进行分析建模. 比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能

Stanford机器学习课程笔记(1) Supervised Learning and Unsupervised Learning

最近跟完了Andrew Ng的Machine Learning前三周的课,主要讲解了机器学习中的线性回归(Linear Regression)和逻辑回归(Logistic Regression)模型.在这里做一下记录. 另外推荐一本统计学习的书,<统计学习方法>李航,书短小精悍,才200多页,但是内容基本上覆盖了机器学习中的理论基础. 笔记<1> 主要了解一下监督学习和无监督学习 机器学习:是关于计算机基于数据 构建概率统计模型 并运用模型对数据进行预测与分析的一门学科. 机器学习

Machine Learning: Clustering &amp; Retrieval机器学习之聚类和信息检索(框架)

Case Studies: Finding Similar DocumentsLearning Outcomes:  By the end of this course, you will be able to:(通过本章的学习,你将掌握)   -Create a document retrieval system using k-nearest neighbors.用K近邻构建文本检索系统   -Identify various similarity metrics for text data

Coursera机器学习-第八周-Unsupervised Learning(K-Means)

Clustering K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则.K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小.算法采用误差平方和准则函数作为聚类准则函数. Unsuperivised Learning:Intruduction 典型的Supervised Learning 有一组附标记(y(i))的训练数据集, 我们