DP方程及意义

01背包

有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i],价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:   

  这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。   

  用子问题定义状态:即f[i][v]表示前i件物品(部分或全部)恰放入一个容量为v的背包可以获得的最大价值。

  则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}。   

  这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

  所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”,此时能获得的最大价值就是f [i-1][v-w[i]]再加上通过放入第i件物品获得的价值c[i]。

  注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i-1][v],这样就可以保证f[N][V]就是最后的答案。

  但是若将所有f[i][j]的初始值都赋为0,你会发现f[n][v]也会是最后的答案。  

  因为这样你默认了最开始f[i][j]是有意义的,只是价值为0,就看作是无物品放的背包价值都为0,所以对最终价值无影响,这样初始化后的状态表示就可以把“恰”字去掉。

e.g.

【问题描述】 一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。

【输入格式】 第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

【输出格式】 仅一行,一个数,表示最大总价值。

【样例输入】10 4 2 1 3 3 4 5 7 9

【样例输出】12

#include<cstdio>
using namespace std;
const int maxm = 201, maxn = 31;
int m, n;
int w[maxn], c[maxn];
int f[maxn][maxm]; 

int max(int x,int y)  { x>y?x:y;}                     //求x和y最大值

int main(){
    scanf("%d%d",&m, &n);         //背包容量m和物品数量n
    for (int i = 1; i <= n; i++)         //在初始化循环变量部分,定义一个变量并初始化
      scanf("%d%d",&w[i],&c[i]);    //每个物品的重量和价值
    for (int i = 1; i <= n; i++)         // f[i][v]表示前i件物品,总重量不超过v的最优价值
        for (int v = m; v > 0; v--)
            if (w[i] <= v)  f[i][v] = max(f[i-1][v],f[i-1][v-w[i]]+c[i]);
               else  f[i][v] = f[i-1][v];
     printf("%d",f[n][m]);           // f[n][m]为最优解
     return 0;
}

【解法一】设f[i][v]表示前i件物品,总重量不超过v的最优价值,则f[i][v]=max(f[i-1][v-w[i]]+c[i],f[i-1][v]) ;f[n][m]即为最优解

 1 #include<cstdio>
 2 using namespace std;
 3
 4 const int maxm = 2001, maxn = 31;
 5 int m, n;
 6 int w[maxn], c[maxn];
 7 int f[maxm];
 8 int main(){
 9     scanf("%d%d",&m, &n);            //背包容量m和物品数量n
10     for (int i=1; i <= n; i++)
11         scanf("%d%d",&w[i],&c[i]);     //每个物品的重量和价值
12
13     for (int i=1; i <= n; i++)             //设f(v)表示重量不超过v公斤的最大价值
14         for (int v = m; v >= w[i]; v--)
15             if (f[v-w[i]]+c[i]>f[v])
16                 f[v] = f[v-w[i]]+c[i];
17 printf("%d",f[m]);                      // f(m)为最优解
18 return 0;
19 }

【解法二】本问题的数学模型如下:设 f[v]表示重量不超过v公斤的最大价值, 则f[v]=max{f[v],f[v-w[i]]+c[i]} ,当v>=w[i],1<=i<=n



完全背包问题

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是w[i],价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

  这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,

像这样将01背包问题的基本思路加以改进:f[i][v]=max{f[i-1][v-k*w[i]]+k*c[i]|0<=k*w[i]<= v}   

这个算法使用一维数组,伪代码:   for i=1..N    for v=0..V      f[v]=max{f[v],f[v-w[i]]+c[i]};

  这个伪代码与01背包问题的伪代码只有v的循环次序不同而已。首先想想为什么01背包问题中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-w[i]]递推而来。

  换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-w[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-w[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。   

  这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-w[i]]+c[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

e.g.

【问题描述】   设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于M,而价值的和为最大。

【输入格式】 第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

【输出格式】 仅一行,一个数,表示最大总价值。

【样例输入】 10 4 2 1 3 3 4 5 7 9

【样例输出】max=12

 1 #include<cstdio>
 2 using namespace std;
 3
 4 const int maxm = 201, maxn = 31;
 5 int m, n;
 6 int w[maxn], c[maxn];
 7 int f[maxn][maxm];
 8 int main()
 9 {
10     scanf("%d%d",&m, &n);            //背包容量m和物品数量n
11     for (int i = 1; i <= n; i++)
12         scanf(“%d%d”,&w[i],&c[i]);    //每个物品的重量和价值
13     for (int i = 1; i <= n; i++)            //f[i][v]表示前i件物品,总重量不超过v的最优价值
14         for (int v = 1; v <= m; v++)
15             if (v < w[i])  f[i][v] = f[i-1][v];
16             else
17         if (f[i-1][v] > f[i][v-w[i]]+c[i])  f[i][v] = f[i-1][v];
18                 else f[i][v] = f[i][v-w[i]]+c[i];
19     printf("max=%d",f[n][m]);         // f[n][m]为最优解
20     return 0;
21 }

【解法一】 设f[i][v]表示前i件物品,总重量不超过v的最优价值,则f[i][v]=max(f[i][v-w[i]]+c[i],f[i-1][v]) ;f[n][m]即为最优解。

时间: 2024-10-13 21:57:28

DP方程及意义的相关文章

zoj-3329-期望/dp/方程优化

One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the

【BZOJ-1096】仓库建设 斜率优化DP

1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先

hdu 4901 The Romantic Hero (dp+背包问题)

题意: 有n个数,从n个数中选出两个集合s和集合t,保证原序列中,集合s中的元素都在 集合t中元素的左边.且要求集合s中元素做抑或运算的值与集合t中元素做与运算的 值相等.问能选出多少种这样的集合s和t. 算法: 左右dp. 用dp[i][j]表示前i个数 做抑或运算得到j的方法数.最后一个值取不取到都不一定. 故为背包的问题.右边也是一样. 枚举时可能出现重复.枚举到第i个和枚举第i+1个可能重复.所以要枚举一个中间值. 这个中间值是归到s集的,因为抑或支持逆运算,而与是不支持的. 所以最后d

【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+1,i)\}+c[i]$$其中$d[i]$是前i个且在i建仓库的最小费用,$cost(j+1,i)$是将j+1-i的东西全都运到i的费用 而我们先考虑cost怎么求,orz,好神的前缀和,首先维护sum[i]表示1-i的物品,则j-i的东西从j全都运到i需要$$(sum[i]-sum[j]) \ti

【BZOJ2466】[中山市选2009]树 树形DP

[BZOJ2466][中山市选2009]树 Description 图论中的树为一个无环的无向图.给定一棵树,每个节点有一盏指示灯和一个按钮.如果节点的按扭被按了,那么该节点的灯会从熄灭变为点亮(当按之前是熄灭的),或者从点亮到熄灭(当按之前是点亮的).并且该节点的直接邻居也发生同样的变化. 开始的时候,所有的指示灯都是熄灭的.请编程计算最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态. Input 输入文件有多组数据. 输入第一行包含一个整数n,表示树的节点数目.每个节点的编号从1到n.

Mark一下, dp状态转移方程写对,但是写代码都错,poj 1651 poj 1179

dp题: 1.写状态转移方程; 2.考虑初始化边界,有意义的赋定值,还没计算的赋边界值: 3.怎么写代码自底向上计算最优值 今天做了几个基础dp,全部是dp方程写对但是初始化以及计算写错 先是poj 1651 其实就是个赤裸裸的矩阵连乘,dp方程很容易写出 dp[i][j]=min(dp[i][k]+dp[k+1][j]+r[i]*c[k]*c[j],dp[i][j]); 先贴两个个二逼的代码,mark下自己多么的二逼: 二逼一:在计算的时候使用了还没有算出来的值,模拟下就知道第一重循环里算dp

BZOJ3437 小P的牧场(斜率优化dp)

题目link:http://www.lydsy.com/JudgeOnline/problem.php?id=3437; 略略读一下题,发现这题是一道dp 有一些牧场: 1 2 3 4 5 6 7 8 9 10 其中编号大的可以管住编号小的. a[i]表示建站费用 b[i]表示养殖奶牛数目 dp方程大概就出来了 f[i]=min(f[j]+cost(j+1,i)) (0<j<i); 可是有些问题需要O(1)计算cost(j+1,i); 怎么办呢? 于是我想了一个很不清真的计算方法 开了两个数组

pyoj61 双线DP

传纸条(一) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以通过传纸条来进行交流.纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n).从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者

【转】什么是动态规划?动态规划的意义是什么

https://www.zhihu.com/question/23995189 徐凯强 Andy 永远好奇 赵劼 . 空明流转 等 1818 人赞同了该回答 动态规划中递推式的求解方法不是动态规划的本质. 我曾经作为省队成员参加过NOI,保送之后也给学校参加NOIP的同学多次讲过动态规划,我试着讲一下我理解的动态规划,争取深入浅出.希望你看了我的答案,能够喜欢上动态规划. 0. 动态规划的本质,是对问题状态的定义和状态转移方程的定义.引自维基百科 dynamic programming is a