推公式 HDU 2552

T 给你2个值 求另外一个 需要推一下

tan(a+b)=(tan(a)+tan(b))/(1-tan(a)*tan(b));

等式左右取tan

tan(atan(a))=a

1/s=tan(...)=(1/u+1/v)/(1-1/(uv));

最后推出 那个式子等于1

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>

using namespace std;

#define MAXN 105

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        double s,u;
        scanf("%lf%lf",&s,&u);
        printf("%d\n",1);
    }
    return 0;
}
时间: 2024-10-19 18:24:00

推公式 HDU 2552的相关文章

HDU 4873 ZCC Loves Intersection(JAVA、大数、推公式)

在一个D维空间,只有整点,点的每个维度的值是0~n-1 .现每秒生成D条线段,第i条线段与第i维度的轴平行.问D条线段的相交期望. 生成线段[a1,a2]的方法(假设该线段为第i条,即与第i维度的轴平行)为,i!=j时,a1[j]=a2[j],且随机取区间[0,n-1]内的整数.然后a1[i],a2[i]在保证a1[i]<a2[i]的前提下同样随机. 由于D条线段各自跟自己维度的轴平行,我们可以转换成只求第i个维度与第j个维度的相交期望,然后乘以C(2,n)就好了 显然线段[a1,a2]和线段[

HDU 4870 Rating(概率、期望、推公式) &amp;&amp; ZOJ 3415 Zhou Yu

其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒)四五次才上来写这份有抄袭嫌疑的题解... 这2题很类似,多校的rating相当于强化版,不过原理都一样.好像是可以用高斯消元做,但我不会.默默推公式了. 公式推导参考http://www.cnblogs.com/chanme/p/3861766.html#2993306 http://www.cn

HDU 1165 Eddy&#39;s research II (推公式)

Eddy's research II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3122    Accepted Submission(s): 1137 Problem Description As is known, Ackermann function plays an important role in the sphere

hdu 6128 Inverse of sum(推公式)

题目链接:hdu 6128 Inverse of sum 题意: 给你n个数,问你有多少对i,j,满足i<j,并且1/(ai+aj)=1/ai+1/aj 在%p意义下. 题解: 不愧是高中生,推公式神题. 将式子通分化简后可得(ai2+aj2+ai*aj)%p=0. 然后两边同时将两边乘(ai-aj),化简可得(ai3-aj3)%p=0. 然后就可以用map记录一下个数,并且减掉ai==aj时不合法的情况就行了. 1 #include<bits/stdc++.h> 2 #define F

2017多校第7场 HDU 6128 Inverse of sum 推公式或者二次剩余

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6128 题意:给你n个数,问你有多少对i,j,满足i<j,并且1/(ai+aj)=1/ai+1/aj 在%p意义下. 解法:官方题解说是用二次剩余来解,但是我并不会这玩意了.在网上看到一位大佬没有二次剩余直接通过推公式做出了这题,真是神奇.http://www.cnblogs.com/bin-gege/p/7367337.html  将式子通分化简后可得(ai2+aj2+ai*aj)%p=0 .然后两

HDU 5047 推公式+别样输出

题意:给n个‘M'形,问最多能把平面分成多少区域 解法:推公式 : f(n) = 4n(4n+1)/2 - 9n + 1 = (8n+1)(n-1)+2 前面部分有可能超long long,所以要转化一下,令a = 8n+1, b = n-1,将两个数都化为a1*10^8+b1的形式,则 (a1*10^8+b1)(a2*10^8+b2) =(a1a2*10^8 + a1b2 + a2b1)*10^8 + b1b2 + 2,由于a1,a2最多2为10^4左右,中间的数就都不会超过long long

Balls and Boxes---hdu5810(推公式)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5810 有n个球m个盒子,随机把球放到盒子中,求每个盒子球个数的方差的期望值 E[V]; 推公式吧,或者打表找规律结果就是n*(m-1)/(m*m)

sgu495:概率dp / 推公式

概率题..可以dp也可以推公式 抽象出来的题目大意: 有 n个小球,有放回的取m次  问 被取出来过的小球的个数的期望 dp维护两个状态 第 i 次取出的是 没有被取出来过的小球的 概率dp[i] 和取出的是已经被取出来过的小球的概率np[i]; 如果第 i-1 次取出的是已经被取出来过的小球 那么第 i 次取出没有取出来过小球的概率即为 dp[i-1]: 反之则为 dp[i-1] - 1/n(没有取出来过的小球少了一个) 所以可以得到状态转移方程 dp[i]=dp[i-1]*(dp[i-1]-

bjfu1211 推公式,筛素数

题目是求fun(n)的值 fun(n)= Gcd(3)+Gcd(4)+…+Gcd(i)+…+Gcd(n).Gcd(n)=gcd(C[n][1],C[n][2],……,C[n][n-1])C[n][k] means the number of way to choose k things from n things. n最大一百万,马上反映到可能是递推打表. 首先肯定是推公式了,fun(n)其实就是Gcd(n)的一个前n项和,没意义,直接看Gcd(n),把前几项列出来,发现公式是Gcd(n) =