3028: 食物

3028: 食物

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 490  Solved: 324
[Submit][Status][Discuss]

Description

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!

我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。

他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等

当然,他又有一些稀奇古怪的限制:

每种食物的限制如下:

承德汉堡:偶数个

可乐:0个或1个

鸡腿:0个,1个或2个

蜜桃多:奇数个

鸡块:4的倍数个

包子:0个,1个,2个或3个

土豆片炒肉:不超过一个。

面包:3的倍数个

注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

Input

输入样例1

1

输出样例1

1

输入样例2

5

输出样例2

35

数据范围

对于40%的数据,1<=N<=100000;

对于所有数据,1<=n<=10^500;

//母函数+乘法逆元
#include<cstdio>
#include<cstring>
#define mod 10007
using namespace std;
char s[510];int n;
void exgcd(int a,int b,int &x,int &y){
    if(!b){x=1;y=0;return ;}
    exgcd(b,a%b,x,y);
    int t=x;x=y;y=t-a/b*y;
}
int main(){
    scanf("%s",s+1);int len=strlen(s+1);
    for(int i=1;i<=len;i++) n=(n*10+s[i]-‘0‘)%mod;
    int x,y;exgcd(6,mod,x,y);
    x=((x%mod)+mod)%mod;
    printf("%d",(((n*(n+1))%mod*(n+2))%mod*x)%mod);
    return 0;
}
时间: 2024-12-21 15:33:14

3028: 食物的相关文章

【BZOJ 3028】 3028: 食物 (生成函数)

3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 569  Solved: 382 Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1

bzoj 3028: 食物 -- 母函数

3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块

BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种

【BZOJ】3028: 食物

http://www.lydsy.com/JudgeOnline/problem.php?id=3028 题意: 每种食物的限制如下:汉堡:偶数个:可乐:0个或1个鸡腿:0个,1个或2个蜜桃:奇数个鸡块:4的倍数个包子:0个,1个,2个或3个土豆:不超过一个.面包:3的倍数个 问带$n$个物品的方案数(n<=10^500) #include <bits/stdc++.h> using namespace std; int main() { int n=0; char c; while(c

BZOJ 3028 食物 生成函数

Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些受欢迎的食物, 如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块:4的倍数个 包子:0个,1个,2个或3个 土豆片炒肉:不超过一个. 面包:3的倍数个 注意,这里我们

[BZOJ 3028]食物(生成函数)

Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块:4的倍数个 包子:0个,1个,2个或3个 土豆片炒肉:不超过一个. 面包:3的倍数个 注意,这里

bzoj 3028 食物——生成函数

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的样子,用组合意义看一下第 n 项的系数,就是 n-1 的可以不选的划分,即 C( n-1+3,3 ) .为了高精度方便,化成 (n+2)*(n+1)*n/6 . 别忘了取模. 注意读入高精度数字的方法.错了几次之后只会一位一位地读了-- #include<iostream> #include<

BZOJ 3028 食物 ——生成函数

把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方案数. 大概就是C(n+3,3) 前面还有一项是x,所以n--即可. 然后就A掉了. #include <cstdio> #include <cstring> #define ll long long const int inv=1668; const int md=10007; in

BZOJ 3028 食物 组合数学

题目大意:简单易懂自己看- - 去学了下母函数相关的东西- - 其实不难理解嘛- - 的说- - #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 510 #define MOD 10007 using namespace std; int n; char s[M]; int main() { int i; scanf("%