数字信号处理--FFT

FFT是离散傅立叶变换的快速算法,可以将一个信号变换
到频域。有些信号在时域上是很难看出什么特征的,但是如
果变换到频域之后,就很容易看出特征了。这就是很多信号
分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱
提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去
做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,
经过FFT之后,就可以得到N个点的FFT结果
。为了方便进行FFT
运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT
之后结果就是一个为N点的复数。每一个点就对应着一个频率
点。
这个点的模值,就是该频率值下的幅度特性。具体跟原始
信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也
可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率
依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒
时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率
分辨力,则必须增加采样点数
也即采样时间。频率分辨率和
采样时间是倒数关系。

  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。

    由于FFT结果的对称性,通常我们只使用前半部分的结果,
即小于采样频率一半的结果。

好了,说了半天,看着公式也晕,下面圈圈以一个实际的
信号来做说明。

假设我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

图1 FFT结果
    从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i 
3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
   
    很明显,1点、51点、76点的值都比较大,它附近的点值
都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
    按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N)
该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,
这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title(‘原始信号‘);

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title(‘FFT 模值‘);

figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title(‘幅度-频率曲线图‘);

figure;
Pyy=[1:N/2];
for i="1:N/2"
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title(‘相位-频率曲线图‘);

时间: 2024-10-28 10:46:33

数字信号处理--FFT的相关文章

数字信号处理--FFT与蝶形算法

在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征.尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理.因此至DFT被发现以来,在很长的一段时间内都不能被应用到实际的工程项目中,直到一种快速的离散傅立叶计算方法——FFT,被发现,离散傅立叶变换才在实际的工程中得到广泛应用.需要强调的是,FFT并不是一种新的频域特征获取方式,而是DFT的一种快速实现算法.本文就FFT的原理以及具体实现过程进行详尽讲解. DFT计算公式 本文不

数字信号处理专题(3)——FFT运算初探

一.前言 FFT运算是目前最常用的信号频谱分析算法.在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各种通信设备和WIFI的物理层信号处理.摄像头内的ISP.音频信号的去噪等.各种算法中,FFT是查看信号本质,也就是频谱的重要手段.之前仅直接调用FFT/IFFT IP核,今天深入探讨下算法本身和实现方案. 二.FFT运算原理及结构 本文仅对FFT的核心思想.作用和算法结构进行介绍,FFT具体原理和公

FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理

DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,

傅立叶变换的深入理解 转载 数字信号处理

傅立叶变换的深入理解 2007年10月05日 星期五 16:41 专题讨论四:关于傅里叶变换的讨论[精彩] 有奖征集:大家讨论一下傅里叶变换相关的内容: 1 变换的目的,意义,应用. 2 傅里叶级数与傅里叶变换的差别和联系 3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,差别,联系. 3 高速傅里叶变换的实质,经常使用的算法之间的差别和联系,各自的优势. 4 fft的应用讨论: 1.变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便.变

FPGA与数字信号处理

过去十几年,通信与多媒体技术的快速发展极大地扩展了数字信号处理(DSP)的应用范围.眼下正在发生的是,以更高的速度和更低的成本实现越来越复杂的算法,这是针对高级信息服更高带宽以及增强的多媒体处理能力等需求的日益增加的结果.一些高性能应用正在不断发展,其中包括高级有线和无线音频.数据和视频处理. 通信和多媒体应用的发展,如互联网通信.安全无线通信以及消费娱乐设备,都在驱动着对能够有效实现复数运算和信号处理算法的高性能设备的需求. 这些应用中需要一些典型的DSP算法包括快速傅里叶变换(FFT).离散

大牛讲解信号与系统以及数字信号处理

转自人人网 第一课 什么是卷积 卷积有什么用 什么是傅利叶变换 什么是拉普拉斯变换 引子很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了. 先说"卷积有什么用"这个问题.(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的.我大吼一声,把他拖出去枪毙!) 讲一个故事:张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程.一天,他拿到了一个产

【南工程开源计划】南工程数字信号处理试卷2019年上学期

OCR内容(为了更好的SEO搜索排名靠前) 1,序列x(m)= sin(片n)的周期是_ 2.单位阶跃信号u(n)的z变换为_,其收敛域为 3.离散傅立叶变换DFT中的参数W.= 4.无限长单位冲激响应滤波器(IR)的基本实现结构有直接I型,直接II型,_和__四种. 5.切贝雪夫I型模拟低通滤波器的幅频特性在通带内具有_.特点,在阻带内具有_特点. 6.快速傅立叶变换算法基本上可以分成两大类,即和_ 1.下列哪一个单位冲激样响应所表示的系统不是因果系统()? (A)h(n)-8(n) (B)h

转载--理解数字信号处理的三把钥匙

原址 在数字信号处理大厦中,有许许多多的小房间,有的门上写着"DFT",有的门上写着"滤波",有的门上写着"卷积",有的门上写着"相关",等等.每一个房间都藏着知识的秘密,每一个房间都要用属于自己的钥匙才能打开.但就整体上来说,理解数字信号处理有三把"万能"的钥匙:时域与频域的相互切换.向量和MATLAB软件.充分应用这三把钥匙,能为深入理解数字信号处理提供有力的帮助. 1.时域与频域的相互切换 深入理解数

数字信号处理MATLAB简单序列

数字信号处理应用的几个基本序列: 1 单位样本序列 function mainImseq() clc clear disp('生成抽样序列'); y=imseq(1,1,5); %调用样本函数,此时序列下标以1开头(1~5之间5个数,下标为1的抽样值为1) %子函数imseq:抽样函数 function [x,n]=imseq(n0,n1,n2) n=[n1:n2]; x=[(n-n0) ==0 ] 2 单位阶越序列 产生u(n) function mainImseq() clc clear d