【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

【BZOJ2111】[ZJOI2010]Perm 排列计数

Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,?,的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ N ≤ 106, P ≤ 10^9,p是一个质数。

题解:题意可转化为:求n个节点能构成的完全二叉堆的个数。显然我们可以求出左右两棵子树的大小,然后分别递归下去即可。

细节有点多~

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=1000010;
int m=1000000;
ll n,p;
ll jc[maxn],jcc[maxn],ine[maxn],f[maxn];
int Log[maxn];
ll C(ll a,ll b)
{
	if(a<b)	return 0;
	if(!b)	return 1;
	if(a<p&&b<p)	return jc[a]*jcc[b]%p*jcc[a-b]%p;
	return C(a%p,b%p)*C(a/p,b/p)%p;
}
ll calc(ll x)
{
	if(f[x])	return f[x];
	ll a=x-(1<<Log[x+1])+1;
	if(a<(1<<Log[x+1]-1))	a=(1<<Log[x+1]-1)-1+a;
	else	a=(1<<Log[x+1])-1;
	return f[x]=C(x-1,a)*calc(a)%p*calc(x-a-1)%p;
}
int main()
{
	scanf("%lld%lld",&n,&p);
	if(m>=p)	m=p-1;
	ll i;
	jc[0]=jcc[0]=1,ine[0]=ine[1]=1;
	for(i=2;i<=m;i++)	ine[i]=(p-(p/i)*ine[p%i]%p)%p;
	for(i=1;i<=m;i++)	jc[i]=jc[i-1]*i%p,jcc[i]=jcc[i-1]*ine[i]%p;
	for(i=2;i<=n+1;i++)	Log[i]=Log[i>>1]+1;
	f[0]=f[1]=1;
	printf("%lld",calc(n));
	return 0;
}
时间: 2025-01-05 01:09:49

【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数的相关文章

组合数学+lucas定理+逆元 BZOJ2111 [ZJOI2010]Perm 排列计数

2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2118  Solved: 563[Submit][Status][Discuss] Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值 Input 输入文件的第一行包含两个

BZOJ2111: [ZJOI2010]Perm 排列计数

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值 题解:注意到形成一个树状结构,如果不妨设f[i]为i所在子树分配s[i]个节点的方案数. 那么有递推式:f[i]=f[i<<1]*f[i<<1|1]*c(

ZJOI2010 Perm 排列计数

[ZJOI2010]Perm 排列计数 时间限制: 1 Sec  内存限制: 259 MB 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值 输入 输入文件的第一行包含两个整数 n和p,含义如上所述. 输出 输出文件中仅包含一个整数,表示计算1,2,?, ???的排列中, Magic排列的个数模 p的值. 样例输入 20 23 样例

bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: using namespace std; 3: const int N = 1e6+5; 4: typedef long long LL; 5: LL m, p, T, x, y, F[N]; 6: LL n, size[N<<1]; 7: LL f[N]; 8: LL inv(LL t, LL

【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很大,只能输出模P以后的值 输入 输入文件的第一行包含两个整数 n和p,含义如上所述. 输出 输出文件中仅包含一个整数,表示计算1,2,?, n的排列中, Mogic排列的个数模 p的值. 样例输入 20 23 样例输出 16 题解 dp+Lucas定理 题目显然小根堆,考虑怎么求以一个节点为根的方案数.根肯定

bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i]为以i为根的方案数,设l为左子树大小r为右子树大小,则有: f[i]=C(i-1,l)*f[l]*f[r] 因为是个堆,所以子树大小都是确定的,可以直接递推得到. 其中C(n,m) nm比较大,可以用lucas定理求. 模型建立的重要性可知一二... [代码] 1 #include<cstdio>

BZOJ 2111 ZJOI2010 Perm 排列计数 组合数学+Lucas定理

题目大意:求1~n的排列能组成多少种小根堆 考虑一个1~i的排列所构成的堆,l为左儿子大小,r为右儿子的大小 那么1一定是堆顶 左儿子和右儿子分别是一个堆 显然如果选出l个数给左儿子 那么左儿子的方案数显然是f[l],右儿子的方案数为f[r] 于是有f[i]=C(i-1,l)*f[l]*f[r] 于是我们线性筛处理出阶乘和阶乘的逆元 代入即可得到WA 原因是这题n可以大于p 此时要用到Lucas定理 坑死了 #include <cstdio> #include <cstring>

BZOJ 2111 [ZJOI2010]Perm 排列计数

题解:发现问题的本质,即堆的个数 动态规划一下 f[i]表示前i个元素形成的堆的个数 第i个元素为根,左右子树又是两个堆 注意:逆元存在条件 #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long Lint; const int maxn=1000009; int n,mm; Lint f[maxn]; int h[maxn]; Lint g

bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

code: #include <bits/stdc++.h> #define N 2000004 #define LL long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; LL mod; LL fac[N],inv[N],f[N],size[N]; LL qpow(LL x,LL y) { LL tmp=1ll; for(;y;y>>=1,x=x*