dp-最长递增子序列 (LIS)

首先引出一个例子

问题 :

  给你一个长度为 6 的数组 , 数组元素为 { 1 ,4,5,6,2,3,8 } , 则其最长单调递增子序列为 { 1 , 4 , 5 , 6 , 8 } , 并且长度为 5 。

分析 :

  题目所要找的递增子序列 , 想想有什么特点呢 ? 是不是会发现 所有的递增序列 ,前一个数一定小于后一个数 ,并且如果给所有从小到大的数标号 , 会得到一串递增的数 。

  既然是借助动态规划分析问题 , 那么当前的产生的结果 , 仅仅只与前一次状态有关 ,一直推的话 , 那么是不是就很自然地想到我最最简单的问题就是当数组中的元素只有一个的时候 , 并且我还要在开一个数组 , 记录所有元素的位置 。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std ;

#define Min(a,b) a>b?b:a
#define Max(a,b) a>b?a:b

int main ( ) {
    int arr[7] = { 1 , 4 , 5 , 6 , 2 , 3 , 8 } ;
    int pt[10] ;

    for ( int i = 0 ; i < 7 ; i++ )
        pt[i] = 1 ;
    for ( int i = 1 ; i < 7 ; i++ ) {
        for ( int j = 0 ; j < i ; j++ ) {
            if ( arr[i] > arr[j] && pt[j]+1 > pt[i] ) // 注意一定要是 pt[j]+1 > pt[i]
                pt[i] = pt[j] + 1 ;
        }
    }
    int maxn = 0 ;
    for ( int i = 0 ; i < 7 ; i++ )
        maxn = max ( maxn , pt[i] ) ;

    cout << maxn << endl ;

    return 0 ;
}

顺便给出 pt[ ] 数组中所存的数据

  

时间: 2024-10-14 12:00:55

dp-最长递增子序列 (LIS)的相关文章

动态规划(DP),最长递增子序列(LIS)

题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int

poj1836——dp,最长上升子序列(lis)

poj1836——dp,最长上升子序列(lis) Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13767   Accepted: 4450 Description In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight

算法--字符串:最长递增子序列LIS

转自:labuladong公众号 很多读者反应,就算看了前文 动态规划详解,了解了动态规划的套路,也不会写状态转移方程,没有思路,怎么办?本文就借助「最长递增子序列」来讲一种设计动态规划的通用技巧:数学归纳思想.  最长递增子序列(Longest Increasing Subsequence,简写 LIS)是比较经典的一个问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何写动态规划. 比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过

最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已经做了实现,但是这种方法时间复杂度太高,查阅相关资料后我发现有人提出的算法可以将时间复杂度降低为O(nlogn),这种算法的核心思想就是替换(二分法替换),以下为我对这中算法的理解: 假设随机生成的一个具有10个元素的数组arrayIn[1-10]如[2, 3, 3, 4, 7, 3, 1, 6,

算法面试题 之 最长递增子序列 LIS

找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E6%95%B0%E7%BB%84%E9%83%BD%E6%B2%A1%E7%BB%99%E5%87%BA%E6%9D%A5 我就是理解了一下他的分析 用更通俗易懂的话来说说题目是这样 d[1..9] = 2 1 5 3 6 4 8 9 7 要求找到最长的递增子序列首先用一个数组b[] 依次的将d里面

POJ 1836 Alignment 最长递增子序列(LIS)的变形

大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 5 4 3 2 1 这个序列从左至右看前半部分是递增,从右至左看前半部分也是递增.所以我们先把从左只右和从右至左的LIS分别求出来. 如果结果是这样的: A[i]={1.86 1.86 1.30621 2 1.4 1 1.97 2.2} //原队列 a[i]={1 1 1 2 2 1 3 4} b[

poj 2533 Longest Ordered Subsequence 最长递增子序列(LIS)

两种算法 1.  O(n^2) 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 6 int a[1005]; 7 int dp[1005]; 8 int main() 9 { 10 int n, maxn; 11 while(scanf("%d", &n) != EOF) 12 { 13 maxn = 0; 14 for(

最长递增子序列 (LIS) Longest Increasing Subsequence

问题描述: 有一个长为n的数列a0, a1,..., an-1.请求出这个序列中最长的上升子序列.请求出这个序列中最长的上升子序列. 上升子序列:对于任意i<j都满足ai<aj的子序列. 限制条件 i <= n <= 1000 0 <= ai <= 1000000 两种定义方式 具体看程序注释 1 #include <iostream> 2 #include <stdio.h> 3 #include <string.h> 4 #inc

动态规划 - 最长递增子序列LIS

问题:一个序列有N个数:A[1],A[2],-,A[N],求出最长非降子序列的长度 样例输入:3 1 2 6 5 4 思路: 首先把问题简单化.可以先求A[1],...A[i]的最长非降子序列,令dp[i]为以A[i]结尾的最长非降子序列.当i = 1 时, 明显是长度dp[1] = 1 : i = 2 时,前面没有比1小的数字,故dp[2]=1 , 此时的最长非降子序列为1 ; i = 3 时,比数字2小的数是1 ,并且只有1 , 分析可知 dp[3] = dp[2]+1:当i = 4 时,找

关于【最长递增子序列(LIS)】

拦截导弹 题目描述: 某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭,并观测到导弹依次飞来的高度,请计算这套系统最多能拦截多少导弹.拦截来袭导弹时,必须按来袭导弹袭击的时间顺序,不允许先拦截后面的导弹,再拦截前面的导弹. 输入: 每组输入有两行, 第一行,输入雷达捕捉到的敌国导弹的数量k(k<=25), 第二行,输入k个正整数,表示k枚导弹的高度,按