.net 开发者尝试Apache Spark?

本文编译自一篇msdn magazine的文章,原文标题和链接为:

Test Run - Introduction to Spark for .NET Developers

https://msdn.microsoft.com/magazine/mt595756

本文介绍了在windows环境中运行和配置Apache Spark™,并使用scala进行几个示例的运行,可以通过本文了解 Apache Spark™的基本概念。

需要说明的是,同另外一篇for .NET Developers文章不同,本文仅使用了windows环境,没有使用.net framework进行开发,也没有使用和提及Spark为.net提供的sdk。

本文尝试可以作为一个开始,将Apache™ Hadoop®Apache Spark™, 以及相关大数据技术引入到.net程序员的解决方案中,包括接口、适配器以及 NHadoop/NSpark的开源和应用。

时间: 2024-11-10 07:44:15

.net 开发者尝试Apache Spark?的相关文章

Apache Spark 3.0 预览版正式发布,多项重大功能发布

2019年11月08日 数砖的 Xingbo Jiang 大佬给社区发了一封邮件,宣布 Apache Spark 3.0 预览版正式发布,这个版本主要是为了对即将发布的 Apache Spark 3.0 版本进行大规模社区测试.无论是从 API 还是从功能上来说,这个预览版都不是一个稳定的版本,它的主要目的是为了让社区提前尝试 Apache Spark 3.0 的新特性.如果大家想测试这个版本,可以到 这里 下载. Apache Spark 3.0 增加了很多令人兴奋的新特性,包括动态分区修剪(

Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas

Apache Spark源码走读之13 -- hiveql on spark实现详解

欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何完成对hql的支持是一件非常有趣的事情. Hive简介 Hive的由来 以下部分摘自Hadoop definite guide中的Hive一章 "Hive由Facebook出品,其设计之初目的是让精通SQL技能的分析师能够对Facebook存放在HDFS上的大规模数据集进行分析和查询. Hive大大

Apache Spark 内存管理详解

Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver

Apache Spark源码走读之15 -- Standalone部署模式下的容错性分析

欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如何处理的. Standalone部署的节点组成 介绍Spark的资料中对于RDD这个概念涉及的比较多,但对于RDD如何运行起来,如何对应到进程和线程的,着墨的不是很多. 在实际的生产环境中,Spark总是会以集群的方式进行运行的,其中standalone的部署方式是所有集群方式中最为精简的一种,另外

新手福利:Apache Spark入门攻略

新手福利:Apache Spark入门攻略 作者Ashwini Kuntamukkala  出处:CSDN 本文聚焦Apache Spark入门,了解其在大数据领域的地位,覆盖Apache Spark的安装及应用程序的建立,并解释一些常见的行为和操作. 一. 为什么要使用Apache Spark 时下,我们正处在一个"大数据"的时代,每时每刻,都有各种类型的数据被生产.而在此紫外,数据增幅的速度也在显著增加.从广义上看,这些数据包含交易数据.社交媒体内容(比如文本.图像和视频)以及传感

3 分钟的高速体验 Apache Spark SQL

"War of the Hadoop SQL engines. And the winner is -?" 这是一个非常好的问题.只要.无论答案是什么.我们都值花一点时间找出 Spark SQL 这个 Spark 里面的家庭成员. 原本Apache Spark SQL 官网上的代码片断(Spark官网上的样例有个通病:不提供完整代码)已经写得算比較清楚,但假设用户全然把它的代码拷贝下来,可能会碰到编译不通过的问题.另外,Spark官网上的样例还有另外一个通病:不提供test data.

Apache Spark技术实战之4 -- 利用Spark将json文件导入Cassandra

欢迎转载,转载请注明出处. 概要 本文简要介绍如何使用spark-cassandra-connector将json文件导入到cassandra数据库,这是一个使用spark的综合性示例. 前提条件 假设已经阅读技术实战之3,并安装了如下软件 jdk scala sbt cassandra spark-cassandra-connector 实验目的 将存在于json文件中的数据导入到cassandra数据库,目前由cassandra提供的官方工具是json2sstable,由于对cassandr

Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio