一致性hash算法在内存数据库中的应用

  由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式。

  Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取。我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希。因为Memcached的哈希策略是在其客户端实现的,因此不同的客户端实现也有区别,以 Spymemcache、Xmemcache为例,都是使用了KETAMA作为其实现。

  一致性hash算法:

  由于hash算法结果一般为unsigned int型,因此对于hash函数的结果应该均匀分布在[0,2^32-1]区间,如果我们把一个圆环用2^32 个点来进行均匀切割,首先按照hash(key)函数算出服务器(节点)的哈希值, 并将其分布到0~2^32的圆环上。

  用同样的hash(key)函数求出需要存储数据的键的哈希值,并映射到圆环上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器 (节点)上。key1、key2、key3和server1、server2通过hash都能在这个圆环上找到自己的位置,并且通过顺时针的方式来将 key定位到server。按上图来说,key1和key2存储到server1,而key3存储到server2。如果新增一台server,hash 后在key1和key2之间,则只会影响key1(key1将会存储在新增的server上),其它不变。

16家上市银行去年净赚1.27万亿 仍占A股半壁江山:http://licai.daiyuline.com/caijingxinwen/317.html

财政部:扩大18项行政事业性收费免征范围:http://licai.daiyuline.com/zhengquan/316.html

时间: 2024-10-28 21:52:46

一致性hash算法在内存数据库中的应用的相关文章

一致性hash算法在memcached中的使用

一.概述 1.我们的memcacheclient(这里我看的spymemcache的源代码).使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同.仅仅是对我们要存储数据的key进行hash计算,分配到不同节点存储.一致性hash算法是对我们要存储数据的server进行hash计算,进而确认每一个key的存储位置.  2.常规hash算法的应用以及其弊端 最常规的方式莫过于hash取模的方式.比方集群中可用机器适量为N,那么key值为K的的数据请求非常easy

(转) 一致性Hash算法在Memcached中的应用

前言 大家应该都知道Memcached要想实现分布式只能在客户端来完成,目前比较流行的是通过一致性hash算法来实现.常规的方法是将 server的hash值与server的总台数进行求余,即hash%N,这种方法的弊端是当增减服务器时,将会有较多的缓存需要被重新分配且会造成缓 存分配不均匀的情况(有可能某一台服务器分配的很多,其它的却很少). 今天分享一种叫做”ketama”的一致性hash算法,它通过虚拟节点的概念和不同的缓存分配规则有效的抑制了缓存分布不均匀,并最大限度地减少服务器增减时缓

一致性Hash算法及使用场景

一.问题产生背景      在使用分布式对数据进行存储时,经常会碰到需要新增节点来满足业务快速增长的需求.然而在新增节点时,如果处理不善会导致所有的数据重新分片,这对于某些系统来说可能是灾难性的. 那么是否有可行的方法,在数据重分片时,只需要迁移与之关联的节点而不需要迁移整个数据呢?当然有,在这种情况下我们可以使用一致性Hash来处理. 二.一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot

OpenStack_Swift源代码分析——Ring基本原理及一致性Hash算法

1.Ring的基本概念 Ring是swfit中最重要的组件.用于记录存储对象与物理位置之间的映射关系,当用户须要对Account.Container.Object操作时,就须要查询相应的Ring文件(Account.Container.Object都有自己相应的Ring),Ring 使用Region(近期几个版本号中新增加的).Zone.Device.Partition和Replica来维护这些信息,对于每个对象,依据你在部署swift设置的Replica数量,集群中会存有Replica个对象.

OpenStack_Swift源码分析——Ring基本原理及一致性Hash算法

1.Ring的基本概念 Ring是swfit中最重要的组件,用于记录存储对象与物理位置之间的映射关系,当用户需要对Account.Container.Object操作时,就需要查询对应的Ring文件(Account.Container.Object都有自己对应的Ring),Ring 使用Region(最近几个版本中新加入的).Zone.Device.Partition和Replica来维护这些信息,对于每一个对象,根据你在部署swift设置的Replica数量,集群中会存有Replica个对象.

[转载] 一致性hash算法释义

转载自http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html 一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用. 但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcach

一致性hash算法及java实现

一致性hash算法是分布式中一个常用且好用的分片算法.或者数据库分库分表算法.现在的互联网服务架构中,为避免单点故障.提升处理效率.横向扩展等原因,分布式系统已经成为了居家旅行必备的部署模式,所以也产出了几种数据分片的方法: 1.取模,2.划段,3.一致性hash 前两种有很大的一个问题就是需要固定的节点数,即节点数不能变,不能某一个节点挂了或者实时增加一个节点,变了分片规则就需要改变,需要迁移的数据也多. 那么一致性hash是怎么解决这个问题的呢? 一致性hash:对节点和数据,都做一次has

一致性Hash算法背景

一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用. 但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcached缓存数据库的人都知道,memcached服务器端本身不提供分布式cache的一致性,而是由客户端来提供,具体在计算一致性has

一致性Hash算法在Redis分布式中的使用

由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢?这样就需要我们自己实现分布式. Memcached对大家应该不陌生,通过把Key映射到Memcached Server上,实现快速读取.我们可以动态对其节点增加,并未影响之前已经映射到内存的Key与memcached Server之间的关系,这就是因为使用了一致性哈希.因为Memcached的哈希策