第3课:通过案例对SparkStreaming 透彻理解三板斧之三:解密SparkStreaming运行机制和架构进阶之Job和容错

理解Spark Streaming的Job的整个架构和运行机制对于精通Spark Streaming是至关重要的。

一 首先我们运行以下的程序,然后通过这个程序的运行过程进一步加深理解Spark Streaming流处理的Job的执行的过程,代码如下:

object OnlineForeachRDD2DB {

def main(args: Array[String]){

/*

* 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,

* 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置

* 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如

* 只有1G的内存)的初学者       *

*/

val conf = new SparkConf() //创建SparkConf对象

conf.setAppName("OnlineForeachRDD") //设置应用程序的名称,在程序运行的监控界面可以看到名称

//    conf.setMaster("spark://Master:7077") //此时,程序在Spark集群

conf.setMaster("local[6]")

//设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口

val ssc = new StreamingContext(conf, Seconds(5))

val lines = ssc.socketTextStream("Master", 9999)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

wordCounts.foreachRDD { rdd =>

rdd.foreachPartition { partitionOfRecords => {

// ConnectionPool is a static, lazily initialized pool of connections

val connection = ConnectionPool.getConnection()

partitionOfRecords.foreach(record => {

val sql = "insert into streaming_itemcount(item,count) values(‘" + record._1 + "‘," + record._2 + ")"

val stmt = connection.createStatement();

stmt.executeUpdate(sql);

})

ConnectionPool.returnConnection(connection)  // return to the pool for future reuse

}

}

}

/**

* 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler

* 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:

*   1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job

*   2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到

*   数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker

*   内部会通过ReceivedBlockTracker来管理接受到的元数据信息

* 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD

* 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个

* 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?

*   1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;

*   2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;

*

*/

ssc.start()

ssc.awaitTermination()

}

}

二:从容错架构的角度透视Spark Streaming

  我们知道DStream与RDD的关系就是随着时间流逝不断的产生RDD,对DStream的操作就是在固定时间上操作RDD。所以从某种意义上而言,Spark Streaming的基于DStream的容错机制,实际上就是划分到每一次形成的RDD的容错机制,这也是Spark Streaming的高明之处。

RDD作为 分布式弹性数据集,它的弹性主要体现在:

  1.自动的分配内存和硬盘,优先基于内存

  2.基于lineage容错机制

  3.task会指定次数的重试

  4.stage失败会自动重试

  5.checkpoint和persist 复用

  6.数据调度弹性:DAG,TASK和资源管理无关。

  7.数据分片的高度弹性

  基于RDD的特性,它的容错机制主要就是两种:一是checkpoint,二是基于lineage(血统)的容错。一般而言,spark选择血统容错,因为对于大规模的数据集,做检查点的成本很高。但是有的情况下,不如说lineage链条过于复杂和冗长,这时候就需要做checkpoint。

  考虑到RDD的依赖关系,每个stage内部都是窄依赖,此时一般基于lineage容错,方便高效。在stage之间,是宽依赖,产生了shuffle操作,这种情况下,做检查点则更好。总结来说,stage内部做lineage,stage之间做checkpoint。

时间: 2024-10-20 00:36:09

第3课:通过案例对SparkStreaming 透彻理解三板斧之三:解密SparkStreaming运行机制和架构进阶之Job和容错的相关文章

Spark版本定制版3-通过案例对SparkStreaming透彻理解三板斧之三

本讲内容: a. Spark Streaming Job 架构和运行机制 b. Spark Streaming Job 容错架构和运行机制 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾: 上节课谈到Spark Streaming是基于DStream编程.DStream是逻辑级别的,而RDD是物理级别的.DStream是随着时间的流动内部将集合封装RDD.对DStream的操作,归根结底还是对其RDD进行的操作. 如果将Spark Stre

解密SparkStreaming运行机制和架构进阶之Job和容错(第三篇)

本期要点: 1.探讨Spark Streaming Job架构和运行机制 2.探讨Spark Streaming 容错机制 关于SparkStreaming我们在前面的博客中其实有所探讨,SparkStreaming是运行在SparkCode之前的一个子框架,下面我们通过一个简单例子来逐一探讨SparkStreaming运行机制和架构 SparkStreaming运行机制和架构 //新浪微博:http://weibo.com/ilovepains/ SparkConf conf = new Sp

第3课:SparkStreaming 透彻理解三板斧之三:解密SparkStreaming运行机制和架构进阶之Job和容错

本期内容: 解密Spark Streaming Job架构和运行机制 解密Spark Streaming容错架构和运行机制 理解SparkStreaming的Job的整个架构和运行机制对于精通SparkStreaming是至关重要的.我们知道对于一般的Spark应用程序来说,是RDD的action操作触发了Job的运行.那对于SparkStreaming来说,Job是怎么样运行的呢?我们在编写SparkStreaming程序的时候,设置了BatchDuration,Job每隔BatchDurat

spark版本定制:SparkStreaming 透彻理解三板斧之三:解密SparkStreaming运行机制和架构进阶之Job和容错

本期内容: 1.解密Spark Streaming Job架构和运行机制 2.解密Spark Streaming 容错架构和运行机制 一.解密Spark Streaming Job架构和运行机制 通过代码洞察Job的执行过程: object OnlineForeachRDD2DB { def main(args: Array[String]){ /* * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息 */ val conf = new SparkCon

Spark源码定制第一课:通过案例对SparkStreaming透彻理解三板斧之一

第一课:通过案例对SparkStreaming透彻理解三板斧之一:解密SparkStreaming另类实验及SparkStreaming本质解析 本期导读: 1 Spark源码定制选择从SparkStreaming入手: 2 Spark Streaming另类在线实验: 3 瞬间理解SparkStreaming本质. 1.    从Spark Streaming入手开始Spark源码版本定制之路 1.1           从Spark Streaming入手Spark源码版本定制之路的理由 从

Spark版本定制:通过案例对SparkStreaming透彻理解三板斧之二:解密SparkStreaming运行机制和架构

本期内容: 1.解密Spark Streaming运行机制 2.解密Spark Streaming架构 上期回顾: 1.技术界的寻龙点穴,每个领域都有自己的龙脉,Spark就是大数据界的龙脉,Spark Streaming就是Spark的龙血: 2.采用了降维(把时间Batch Interval放大)的方式,进行案例演示实战,得到的结论是:特定的时间内是RDD在执行具体的Job: 一.解密Spark Streaming运行机制和架构 运行机制概念:       Spark Streaming运行

通过案例对 spark streaming 透彻理解三板斧之三:spark streaming运行机制与架构

本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的存在,任何时候宇宙中的事情一直在发生着的. Spark Streaming好比时间,一直遵循其运行机制和架构在不停的在运行,无论你写多或者少的应用程序都跳不出这个范围. 一.   通过案例透视Job执行过程的Spark Streaming机制解析,案例代码如下: import org.apache.

Spark发行版笔记2:通过案例对SparkStreaming透彻理解三板斧之一

本节课主要从以下二个方面来解密SparkStreaming: 一.解密SparkStreaming运行机制 二.解密SparkStreaming架构 SparkStreaming运行时更像SparkCore上的应用程序,SparkStreaming程序启动后会启动很多job,每个batchIntval.windowByKey的job.框架运行启动的job.例如,Receiver启动时也启动了job,此job为其他job服务,所以需要做复杂的spark程序,往往多个job之间互相配合.SparkS

Spark发行版笔记1:通过案例对SparkStreaming透彻理解三板斧之一

本节课通过二个部分阐述SparkStreaming的理解: 一.解密SparkStreaming另类在线实验 二.瞬间理解SparkStreaming本质 Spark源码定制班主要是自己做发行版.自己动手改进Spark源码,通常在电信.金融.教育.医疗.互联网等领域都有自己不同的业务,如果Sprak官方版本没有你需要的业务功能,你自己可以定制.扩展Spark的功能,满足公司的业务需要. 选择SparkStreaming框架源码研究.二次开发的原因 1.Spark起初只有Spark Core基础框