HDU - 2444 The Accomodation of Studentsp[二分图判定,匈牙利算法]

There are a group of students. Some of them may know each other, while others don‘t. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.

Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don‘t know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.

Calculate the maximum number of pairs that can be arranged into these double rooms.

InputFor each data set: 
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.

Proceed to the end of file.

OutputIf these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms. 
Sample Input

4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6

Sample Output

No
3

点染色判定二分图,将二分图分成2个部分,之后匈牙利求最大匹配即可。
 1 #include<iostream>
 2 using namespace std;
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<vector>
 6 const int maxn = 1000;
 7 vector <int> maps[maxn];
 8 int n,m;
 9 int ok[maxn];//ok[i]代表第i个节点可否配对
10 int matched[maxn];//matched[i]代表第i个节点的配对对象;
11 bool match(int x){
12     for(int i=0;i<maps[x].size();i++){
13         int k = maps[x][i];
14         if(ok[k]==0){
15             ok[k]=1;
16             if(matched[k]==0||match(matched[k])==true){
17                 matched[k]=x;
18                 return true;
19             }
20         }
21     }
22     return false;
23 }
24 int ans = 1;
25 int color[1100];
26 void dfs(int x,int Color){
27     color[x]=Color;
28     for(int i=0;i<maps[x].size()&&ans;i++){
29         if(color[maps[x][i]]!=-1){
30             if(color[maps[x][i]]==Color){
31                 ans = 0;
32                 return;
33             }
34         }
35         else
36         dfs(maps[x][i],!Color);
37     }
38 }
39 int main(){
40     while(scanf("%d%d",&n,&m)!=EOF){
41         for(int i=1;i<=n;i++)
42             maps[i].clear();
43         memset(matched,0,sizeof(matched));
44         ans = 1;
45         for(int i=0;i<n;i++)
46             maps[i].clear();
47         memset(color,-1,sizeof(color));
48         for(int i=1;i<=m;i++){
49             int k,q;
50             scanf("%d%d",&k,&q);
51             maps[k].push_back(q);
52             maps[q].push_back(k);
53         }
54         ans = 1;
55         for(int i=1;i<=n&&ans;i++){
56             if(color[i]!=-1)
57                 continue;
58             dfs(i,0);
59         }
60         if(!ans){
61             printf("No\n");
62             continue;
63         }
64         ans = 0;
65         for(int i=1;i<=n;i++){
66             memset(ok,0,sizeof(ok));
67             if(color[i]!=0)
68                 continue;
69             if(match(i)==true)
70                 ans+=1;
71         }
72         cout<<ans<<endl;
73     }
74     return 0;
75 }

原文地址:https://www.cnblogs.com/xfww/p/8542342.html

时间: 2025-01-13 12:57:15

HDU - 2444 The Accomodation of Studentsp[二分图判定,匈牙利算法]的相关文章

HDU 2444 The Accomodation of Students 二分图判定+最大匹配

题目来源:HDU 2444 The Accomodation of Students 题意:n个人是否可以分成2组 每组的人不能相互认识 就是二分图判定 可以分成2组 每组选一个2个人认识可以去一个双人间 最多可以有几组 思路:二分图判定+最大匹配 #include <cstdio> #include <cstring> #include <vector> using namespace std; const int maxn = 550; int vis[maxn];

HDU 2444 The Accomodation of Students二分图判定和匈牙利算法

本题就是先判断是否可以组成二分图,然后用匈牙利算法求出最大匹配. 到底如何学习一种新算法呢? 我也不知道什么方法是最佳的了,因为看书本和大牛们写的匈牙利算法详细分析,看了差不多两个小时没看懂,最后自己直接看代码,居然不到半个小时看懂了.然后就可以直接拿来解题啦. 比如topcoder上有这个算法的很详细的分析,真没看懂. 代码居然比分析更清晰了?我也不好下结论. 但是我觉得主要的思想还是有作用的. 说说我对这个算法的理解吧: 1 假设二分图分为两个集合 U, V,那么从一个集合U出发 2 U的一

HDU 2444 The Accomodation of Students (二分图判定,二分图匹配,匈牙利算法)

题意:有一堆的学生关系,要将他们先分成两个组,同组的人都不互不认识,如果不能分2组,输出No.若能,则继续.在两组中挑两个认识的人(每组各1人)到一个双人房.输出需要多少个双人房? 思路: 先判定是否为二分图,可以用黑白着色法(DFS或BFS都行).若是二分图,再进行匹配,用匈牙利算法,注:给的是整个图,没有区分男女,用邻接表比较好. 1 #include <bits/stdc++.h> 2 #define LL long long 3 using namespace std; 4 const

HDU 2444 The Accomodation of Students(dfs + 匈牙利算法)

题目大意: 有n个学生,有m对人是认识的,每一对认识的人能分到一间房,问能否把n个学生分成两部分,每部分内的学生互不认识,而两部分之间的学生认识.如果可以分成两部分,就算出房间最多需要多少间,否则就输出No. 解题思路: 先是要判断是否为二部图,然后求最大匹配. #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <vector>

HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 49    Accepted Submission(s): 14 Problem Description There is a kindom of obsession, so people in this kingdom do things very

[ACM] HDU 2063 过山车 (二分图,匈牙利算法)

过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 11509    Accepted Submission(s): 5066 Problem Description RPG girls今天和大家一起去游乐场玩,最终能够坐上梦寐以求的过山车了.但是,过山车的每一排仅仅有两个座位,并且还有条不成文的规矩,就是每一个女生必须找个个男生做

HDU 2444 The Accomodation of Students(判断是否是二分图)

题目链接 题意:n个学生,m对关系,每一对互相认识的能住一个房间.问否把这些学生分成两组,要求每组的学生都互不认识.求最多需要多少个房间. 是否能分成两组?也就是说判断是不是二分图,判断二分图的办法,用染色法 把初始点染成黑色,然后与之相连的染成白色,重复,使路径黑白相间, 如果当前点的颜色和与他相连点的颜色相同时,则说明这个图不是二分图 求最多需要多少个房间?也就是求最大匹配数. #include <iostream> #include <cstdio> #include <

hdu 2444 The Accomodation of Students

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2458    Accepted Submission(s): 1177 Problem Description There are a group of students. Some of them may know each ot

POJ1274:The Perfect Stall(二分图最大匹配 匈牙利算法)

The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17895   Accepted: 8143 Description Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering pr