Hadoop学习之路(十一)HDFS的读写详解

HDFS的写操作

《HDFS权威指南》图解HDFS写过程

详细文字说明(术语)

1、使用 HDFS 提供的客户端 Client,向远程的 namenode 发起 RPC 请求

2、namenode 会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会 为文件创建一个记录,否则会让客户端抛出异常;

3、当客户端开始写入文件的时候,客户端会将文件切分成多个 packets,并在内部以数据队列“data queue(数据队列)”的形式管理这些 packets,并向 namenode 申请 blocks,获 取用来存储 replicas 的合适的 datanode 列表,列表的大小根据 namenode 中 replication 的设定而定;

4、开始以 pipeline(管道)的形式将 packet 写入所有的 replicas 中。客户端把 packet 以流的 方式写入第一个 datanode,该 datanode 把该 packet 存储之后,再将其传递给在此 pipeline 中的下一个 datanode,直到最后一个 datanode,这种写数据的方式呈流水线的形式。

5、最后一个 datanode 成功存储之后会返回一个 ack packet(确认队列),在 pipeline 里传递 至客户端,在客户端的开发库内部维护着"ack queue",成功收到 datanode 返回的 ack packet 后会从"data queue"移除相应的 packet。

6、如果传输过程中,有某个 datanode 出现了故障,那么当前的 pipeline 会被关闭,出现故 障的 datanode 会从当前的 pipeline 中移除,剩余的 block 会继续剩下的 datanode 中继续 以 pipeline 的形式传输,同时 namenode 会分配一个新的 datanode,保持 replicas 设定的 数量。

7、客户端完成数据的写入后,会对数据流调用 close()方法,关闭数据流;

8、只要写入了 dfs.replication.min(最小写入成功的副本数)的复本数(默认为 1),写操作 就会成功,并且这个块可以在集群中异步复制,直到达到其目标复本数(dfs.replication 的默认值为 3),因为 namenode 已经知道文件由哪些块组成,所以它在返回成功前只需 要等待数据块进行最小量的复制。

详细文字说明(口语)

1、客户端发起请求:hadoop fs -put hadoop.tar.gz / 

客户端怎么知道请求发给那个节点的哪个进程?

因为客户端会提供一些工具来解析出来你所指定的HDFS集群的主节点是谁,以及端口号等信息,主要是通过URI来确定,

url:hdfs://hadoop1:9000

当前请求会包含一个非常重要的信息: 上传的数据的总大小

2、namenode会响应客户端的这个请求

namenode的职责:

1 管理元数据(抽象目录树结构)

用户上传的那个文件在对应的目录如果存在。那么HDFS集群应该作何处理,不会处理

用户上传的那个文件要存储的目录不存在的话,如果不存在不会创建

2、响应请求

真正的操作:做一系列的校验,

1、校验客户端的请求是否合理
2、校验客户端是否有权限进行上传

3、如果namenode返回给客户端的结果是 通过, 那就是允许上传

namenode会给客户端返回对应的所有的数据块的多个副本的存放节点列表,如:

file1_blk1 hadoop02,hadoop03,hadoop04
file1_blk2 hadoop03,hadoop04,hadoop05

4、客户端在获取到了namenode返回回来的所有数据块的多个副本的存放地的数据之后,就可以按照顺序逐一进行数据块的上传操作

5、对要上传的数据块进行逻辑切片

切片分成两个阶段:

1、规划怎么切
2、真正的切

物理切片: 1 和 2

逻辑切片: 1

file1_blk1 : file1:0:128
file1_blk2 : file1:128:256

  逻辑切片只是规划了怎么切

  

6、开始上传第一个数据块

7、客户端会做一系列准备操作

1、依次发送请求去连接对应的datnaode

pipline : client - node1 - node2 - node3

按照一个个的数据包的形式进行发送的。

每次传输完一个数据包,每个副本节点都会进行校验,依次原路给客户端

2、在客户端会启动一个服务:

用户就是用来等到将来要在这个pipline数据管道上进行传输的数据包的校验信息

客户端就能知道当前从clinet到写node1,2,3三个节点上去的数据是否都写入正确和成功

8、clinet会正式的把这个快中的所有packet都写入到对应的副本节点

1、block是最大的一个单位,它是最终存储于DataNode上的数据粒度,由dfs.block.size参数决定,2.x版本默认是128M;注:这个参数由客户端配置决定;如:System.out.println(conf.get("dfs.blocksize"));//结果是134217728

2、packet是中等的一个单位,它是数据由DFSClient流向DataNode的粒度,以dfs.write.packet.size参数为参考值,默认是64K;注:这个参数为参考值,是指真正在进行数据传输时,会以它为基准进行调整,调整的原因是一个packet有特定的结构,调整的目标是这个packet的大小刚好包含结构中的所有成员,同时也保证写到DataNode后当前block的大小不超过设定值;

如:System.out.println(conf.get("dfs.write.packet.size"));//结果是65536

3、chunk是最小的一个单位,它是DFSClient到DataNode数据传输中进行数据校验的粒度,由io.bytes.per.checksum参数决定,默认是512B;注:事实上一个chunk还包含4B的校验值,因而chunk写入packet时是516B;数据与检验值的比值为128:1,所以对于一个128M的block会有一个1M的校验文件与之对应;

如:System.out.println(conf.get("io.bytes.per.checksum"));//结果是512

9、clinet进行校验,如果校验通过,表示该数据块写入成功

10、重复7 8 9 三个操作,来继续上传其他的数据块

11、客户端在意识到所有的数据块都写入成功之后,会给namenode发送一个反馈,就是告诉namenode当前客户端上传的数据已经成功。

HDFS读操作

《HDFS权威指南》图解HDFS读过程

数据读取

1、客户端调用FileSystem 实例的open 方法,获得这个文件对应的输入流InputStream。

2、通过RPC 远程调用NameNode ,获得NameNode 中此文件对应的数据块保存位置,包括这个文件的副本的保存位置( 主要是各DataNode的地址) 。

3、获得输入流之后,客户端调用read 方法读取数据。选择最近的DataNode 建立连接并读取数据。

4、如果客户端和其中一个DataNode 位于同一机器(比如MapReduce 过程中的mapper 和reducer),那么就会直接从本地读取数据。

5、到达数据块末端,关闭与这个DataNode 的连接,然后重新查找下一个数据块。

6、不断执行第2 - 5 步直到数据全部读完。

7、客户端调用close ,关闭输入流DF S InputStream。

原文地址:https://www.cnblogs.com/qingyunzong/p/8548806.html

时间: 2024-10-01 06:09:05

Hadoop学习之路(十一)HDFS的读写详解的相关文章

Hadoop学习之路(8)Yarn资源调度系统详解

文章目录 1.Yarn介绍 2.Yarn架构 2.1 .ResourceManager 2.2 .ApplicationMaster 2.3 .NodeManager 2.4 .Container 2.5 .Resource Request 及 Container 2.6 .JobHistoryServer 2.7.Timeline Server 3.yarn应用运行原理 3.1.yarn应用提交过程 3.2.mapreduce on yarn 4. yarn使用 4.1 .配置文件 4.2.

Hadoop学习之路(2)Hdfs分布式文件系统

@[TOC] 1.Hadoop架构 Hadoop由三个模块组成:分布式存储HDFS.分布式计算MapReduce.资源调度引擎Yarn 2.HDFS体系架构 2.1NameNode    NameNode负责:文件元数据信息的操作以及处理客户端的请求   NameNode管理:HDFS文件系统的命名空间NameSpace.   NameNode维护:文件系统树(FileSystem)以及文件树中所有的文件和文件夹的元数据信息(matedata)维护文件到块的对应关系和块到节点的对应关系   Na

Linux学习之路-DNS原理-BIND配置详解

DNS原理-BIND配置详解 DNS系统概述 DNS系统作用     a) DNS,简单地说,就是Domain Name System,翻成中文就是"域名系统".主要的功能就是将人易于记忆的Domain Name与人不容易记忆的IP Address作转换.      b) DNS提供正向解析和反向解析          正向解析:根据主机名称(域名)查找对应的IP地址.          反向解析:根据IP地址查找对应的主机域名 DNS系统结构  系统结构原理  目前DNS采用的是分布

阿里封神谈hadoop学习之路

阿里封神谈hadoop学习之路 封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同学进

第131讲:Hadoop集群管理工具均衡器Balancer 实战详解学习笔记

第131讲:Hadoop集群管理工具均衡器Balancer 实战详解学习笔记 为什么需要均衡器呢? 随着集群运行,具体hdfs各个数据存储节点上的block可能分布得越来越不均衡,会导致运行作业时降低mapreduce的本地性. 分布式计算中精髓性的一名话:数据不动代码动.降低本地性对性能的影响是致使的,而且不能充分利用集群的资源,因为导致任务计算会集中在部分datanode上,更易导致故障. balancer是hadoop的一个守护进程.会将block从忙的datanode移动到闲的datan

C++文件读写详解(ofstream,ifstream,fstream)

c++bufferiosiostreamfilestream 目录(?)[+] 在看C++编程思想中,每个练习基本都是使用ofstream,ifstream,fstream,以前粗略知道其用法和含义,在看了几位大牛的博文后,进行整理和总结: 这里主要是讨论fstream的内容: [java] view plaincopyprint? #include <fstream> ofstream         //文件写操作 内存写入存储设备 ifstream         //文件读操作,存储设

&quot;MindManager&quot;学习iOS系列之&quot;CAAnimation-核心动画&quot;详解,让你的应用“动”起来。

"MindManager"学习iOS系列之"CAAnimation-核心动画"详解,思维导图内展示了CAAnimation-核心动画的大多数基本功能和知识,每个part都有代码讲解,展示出CAAnimation-核心动画的清晰轮廓,编者提供了"JPG"."SWF"."PDF"."Word"."Mmap"格式的源文件供给使用.注意:JPG格式仅为图片总览,SWF格式使用

算法学习笔记 KMP算法之 next 数组详解

最近回顾了下字符串匹配 KMP 算法,相对于朴素匹配算法,KMP算法核心改进就在于:待匹配串指针 i 不发生回溯,模式串指针 j 跳转到 next[j],即变为了 j = next[j]. 由此时间复杂度由朴素匹配的 O(m*n) 降到了 O(m+n), 其中模式串长度 m, 待匹配文本串长 n. 其中,比较难理解的地方就是 next 数组的求法.next 数组的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀,也可看作有限状态自动机的状态,而且从自动机的角度反而更容易推导一些. "前

Python学习教程(Python学习路线):Pandas库基础分析-详解时间序列的处理

Python学习教程(Python学习路线):Pandas库基础分析-详解时间序列的处理 在使用Python进行数据分析时,经常会遇到时间日期格式处理和转换,特别是分析和挖掘与时间相关的数据,比如量化交易就是从历史数据中寻找股价的变化规律.Python中自带的处理时间的模块有datetime,NumPy库也提供了相应的方法,Pandas作为Python环境下的数据分析库,更是提供了强大的日期数据处理的功能,是处理时间序列的利器. 1.生成日期序列 主要提供pd.data_range()和pd.p