EOJ 3506. 斐波那契数列

题意:给一个斐波那契数,问是斐波那契数列中的第几个,范围比较大是1到第1e5个斐波那契数

题解:选几个大质数MOD一下,预处理出范围内的所有膜后的值,如果输入的数在取模后能够和某一项斐波那契数的膜一一对应,那么他很大概率的就是它(类似hash???)

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #c81b13 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #822d0f }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #c42275 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #0435ff }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Menlo; color: #000000 }
span.s1 { color: #822d0f }
span.s2 { }
span.s3 { color: #c81b13 }
span.s4 { color: #0435ff }
span.s5 { color: #000000 }
span.s6 { color: #c42275 }
span.s7 { color: #78492a }
span.s8 { color: #703daa }
span.s9 { color: #539aa4 }
span.s10 { color: #3e1e81 }

#include <iostream>

#include <cstring>

#define ll long long

#define fio ios::sync_with_stdio(false);cin.tie(0)

const int N=2e5+5;

using namespace std;

int mod[]={10000019,99999721,10006333,1006277,10005559,99999787};

int a[N][6];

int main(){

fio;

for(int i=0;i<6;i++){

a[1][i]=1,a[2][i]=2;

for(int j=3;j<=100000;j++){

a[j][i]=(a[j-1][i]+a[j-2][i])%mod[i];

}

}

string str;

ll cm[6];

while(cin>>str){

memset(cm,0,sizeof(cm));

int len=str.length();

for(int i=0;i<len;i++){

for(int j=0;j<6;j++){

cm[j]=(cm[j]*10+str[i]-‘0‘)%mod[j];

}

}

for(int i=1;i<=100000;i++){

int flag=0;

for(int j=0;j<6;j++){

if(cm[j]!=a[i][j]){

flag=1;

break;

}

}

if(flag==0){

cout<<i<<endl;

break;

}

}

}

return 0;

}

  

原文地址:https://www.cnblogs.com/Mrleon/p/8683983.html

时间: 2024-10-25 18:04:27

EOJ 3506. 斐波那契数列的相关文章

用递归和非递归的方法输出斐波那契数列的第n个元素(C语言实现)

费波那契数列(意大利语:Successione di Fibonacci),又译为费波拿契数.斐波那契数列.费氏数列.黄金分割数列. 在数学上,费波那契数列是以递归的方法来定义: {\displaystyle F_{0}=0} {\displaystyle F_{1}=1} {\displaystyle F_{n}=F_{n-1}+F_{n-2}}(n≧2) 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0, 1, 1, 2, 3

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

《剑指Offer》题目——斐波拉契数列

题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.(n<=39) 题目分析:如果使用简单的递归,很容易造成栈溢出.采用递推的方式即可. 代码: public class Fibonacci { public static int fibonacci(int n){ int res[] = new int[2]; res[0]=1; res[1]=1; int temp = 0; if(n==0) return 0; if(n<=2) return res[

js算法集合(二) javascript实现斐波那契数列 (兔子数列) Javascript实现杨辉三角

js算法集合(二)  斐波那契数列.杨辉三角 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列和杨辉三角进行研究,来加深对Javascript的理解. 一.Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为

斐波那契数列

前几天学了javascript,挺难的比之前学的H5难多了,之前还觉得H5很难,一比较之下就相形见绌了. 在JS里面代码什么的还是蛮简单的,就是逻辑问题让你绕不过来....在这些逻辑问题里又有一个既难而且十分经典的问题,那就是斐波那契数列. 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:1.1.2.3.5.8.13.21.34

斐波那契数列(分析别人的代码)

斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 这个数列从第3项开始,每一项都等于前两项之和. n1 = 0 #给n1赋初始值 n2 = 1 #给n1赋初始值 count = 0 #给计数器初始值 while count < 10: #循环条件为计数器小于10 nth = n1 + n2 #n

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

每日一九度之 题目1075:斐波那契数列

时间限制:5 秒 内存限制:32 兆 特殊判题:否 提交:3517 解决:2028 题目描述: 编写一个求斐波那契数列的递归函数,输入n值,使用该递归函数,输出如样例输出的斐波那契数列. 输入: 一个整型数n 输出: 题目可能有多组不同的测试数据,对于每组输入数据, 按题目的要求输出相应的斐波那契图形. 样例输入: 6 样例输出: 0 0 1 1 0 1 1 2 3 0 1 1 2 3 5 8 0 1 1 2 3 5 8 13 21 0 1 1 2 3 5 8 13 21 34 55 这题可以直

php实现斐波那契数列以及由此引起的联想

斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用.————摘自百度百科 公式: F(n)=F(n