java 实现大顶堆

  堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(最小)的元素。

1. 若array[0,...,n-1]表示一颗完全二叉树的顺序存储模式,则双亲节点指针和孩子结点指针之间的内在关系如下:

  任意一节点指针 i:父节点:i==0 ? null : (i-1)/2

            左孩子:2*i + 1

            右孩子:2*i + 2

2. 堆的定义:n个关键字序列array[0,...,n-1],当且仅当满足下列要求:(0 <= i <= (n-1)/2)

      ① array[i] <= array[2*i + 1] 且 array[i] <= array[2*i + 2]; 称为小根堆;

      ② array[i] >= array[2*i + 1] 且 array[i] >= array[2*i + 2]; 称为大根堆;

3. 建立大根堆:

  n个节点的完全二叉树array[0,...,n-1],最后一个节点n-1是第(n-1-1)/2个节点的孩子。对第(n-1-1)/2个节点为根的子树调整,使该子树称为堆。

  对于大根堆,调整方法为:若【根节点的关键字】小于【左右子女中关键字较大者】,则交换。

  之后向前依次对各节点((n-2)/2 - 1)~ 0为根的子树进行调整,看该节点值是否大于其左右子节点的值,若不是,将左右子节点中较大值与之交换,交换后可能会破坏下一级堆,于是继续采用上述方法构建下一级的堆,直到以该节点为根的子树构成堆为止。

  反复利用上述调整堆的方法建堆,直到根节点。

4.堆排序:(大根堆)

  ①将存放在array[0,...,n-1]中的n个元素建成初始堆;

  ②将堆顶元素与堆底元素进行交换,则序列的最大值即已放到正确的位置;

  ③但此时堆被破坏,将堆顶元素向下调整使其继续保持大根堆的性质,再重复第②③步,直到堆中仅剩下一个元素为止。

堆排序算法的性能分析:

  空间复杂度:o(1);

  时间复杂度:建堆:o(n),每次调整o(log n),故最好、最坏、平均情况下:o(n*logn);

  稳定性:不稳定

建立大根堆的方法:

 1     //构建大根堆:将array看成完全二叉树的顺序存储结构
 2     private int[] buildMaxHeap(int[] array){
 3         //从最后一个节点array.length-1的父节点(array.length-1-1)/2开始,直到根节点0,反复调整堆
 4         for(int i=(array.length-2)/2;i>=0;i--){
 5             adjustDownToUp(array, i,array.length);
 6         }
 7         return array;
 8     }
 9
10     //将元素array[k]自下往上逐步调整树形结构
11     private void adjustDownToUp(int[] array,int k,int length){
12         int temp = array[k];
13         for(int i=2*k+1; i<length-1; i=2*i+1){    //i为初始化为节点k的左孩子,沿节点较大的子节点向下调整
14             if(i<length && array[i]<array[i+1]){  //取节点较大的子节点的下标
15                 i++;   //如果节点的右孩子>左孩子,则取右孩子节点的下标
16             }
17             if(temp>=array[i]){  //根节点 >=左右子女中关键字较大者,调整结束
18                 break;
19             }else{   //根节点 <左右子女中关键字较大者
20                 array[k] = array[i];  //将左右子结点中较大值array[i]调整到双亲节点上
21                 k = i; //【关键】修改k值,以便继续向下调整
22             }
23         }
24         array[k] = temp;  //被调整的结点的值放人最终位置
25     }    

堆排序:

 1     //堆排序
 2     public int[] heapSort(int[] array){
 3         array = buildMaxHeap(array); //初始建堆,array[0]为第一趟值最大的元素
 4         for(int i=array.length-1;i>1;i--){
 5             int temp = array[0];  //将堆顶元素和堆低元素交换,即得到当前最大元素正确的排序位置
 6             array[0] = array[i];
 7             array[i] = temp;
 8             adjustDownToUp(array, 0,i);  //整理,将剩余的元素整理成堆
 9         }
10         return array;
11     }

删除堆顶元素(即序列中的最大值):先将堆的最后一个元素与堆顶元素交换,由于此时堆的性质被破坏,需对此时的根节点进行向下调整操作。

1     //删除堆顶元素操作
2     public int[] deleteMax(int[] array){
3         //将堆的最后一个元素与堆顶元素交换,堆底元素值设为-99999
4         array[0] = array[array.length-1];
5         array[array.length-1] = -99999;
6         //对此时的根节点进行向下调整
7         adjustDownToUp(array, 0, array.length);
8         return array;
9     }

对堆的插入操作:先将新节点放在堆的末端,再对这个新节点执行向上调整操作。

假设数组的最后一个元素array[array.length-1]为空,新插入的结点初始时放置在此处。

 1     //插入操作:向大根堆array中插入数据data
 2     public int[] insertData(int[] array, int data){
 3         array[array.length-1] = data; //将新节点放在堆的末端
 4         int k = array.length-1;  //需要调整的节点
 5         int parent = (k-1)/2;    //双亲节点
 6         while(parent >=0 && data>array[parent]){
 7             array[k] = array[parent];  //双亲节点下调
 8             k = parent;
 9             if(parent != 0){
10                 parent = (parent-1)/2;  //继续向上比较
11             }else{  //根节点已调整完毕,跳出循环
12                 break;
13             }
14         }
15         array[k] = data;  //将插入的结点放到正确的位置
16         return array;
17     }

测试:

 1     public void toString(int[] array){
 2         for(int i:array){
 3             System.out.print(i+" ");
 4         }
 5     }
 6
 7     public static void main(String args[]){
 8         HeapSort hs = new HeapSort();
 9         int[] array = {87,45,78,32,17,65,53,9,122};
10         System.out.print("构建大根堆:");
11         hs.toString(hs.buildMaxHeap(array));
12         System.out.print("\n"+"删除堆顶元素:");
13         hs.toString(hs.deleteMax(array));
14         System.out.print("\n"+"插入元素63:");
15         hs.toString(hs.insertData(array, 63));
16         System.out.print("\n"+"大根堆排序:");
17         hs.toString(hs.heapSort(array));
18     }

原文地址:https://www.cnblogs.com/sunshisonghit/p/8643168.html

时间: 2024-10-08 08:05:38

java 实现大顶堆的相关文章

大顶堆第二弹----堆排序(递归实现)

1 package tooffer; 2 3 import java.util.ArrayList; 4 import java.util.Arrays; 5 6 public class BigHeap { 7 8 9 10 /* 11 *交换堆中的两个元素 12 */ 13 private void swap(ArrayList<Integer> heapList,int srcIndex,int dstIndex) 14 { 15 int tmp = heapList.get(srcIn

剑指offer:数据流中的中位数(小顶堆+大顶堆)

1. 题目描述 /** 如何得到一个数据流中的中位数? 如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值. 如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. 我们使用 Insert()方法读取数据流,使用 GetMedian()方法获取当前读取数据的中位数. */ 2. 思路 /** 最大堆和最小堆 * 每次插入小顶堆的是当前大顶堆中最大的数 * 每次插入大顶堆的是当前小顶堆中最小的数 * 这样保证小顶堆中的数永远大于等于大顶堆中的数(值

wikioi 1052 大顶堆

题目描述 Description 王钢是一名学习成绩优异的学生,在平时的学习中,他总能利用一切时间认真高效地学习,他不但学习刻苦,而且善于经常总结.完善自己的学习方法,所以他总能在每次考试中得到优异的分数,这一切很大程度上是由于他是一个追求效率的人. 但王钢也是一个喜欢玩的人,平时在学校学习他努力克制自己玩,可在星期天他却会抽一定的时间让自己玩一下,他的爸爸妈妈也比较信任他的学习能力和学习习惯,所以在星期天也不会象其他家长一样对他抓紧,而是允许他在星期天上午可以自由支配时间. 地鼠游戏是一项需要

寻找最小的k个数(大顶堆方法)

题目描述:查找最小的k个元素,输入n个整数,输出其中最小的k个. 一般的排序方法,如快排,时间复杂度为O(n*logn+k); 大顶堆方法,时间复杂度为O(k+(n-k)*logk); 如果建立k个元素的最小堆的话,那么其空间复杂度势为O(N),而建立k个元素的最大堆的空间复杂度为O(k); 当面对海量数据处理的时候,大顶堆的方法是较为靠谱的,并且可以在面试时短时间内完成代码. 1 class Solution { 2 public: 3 void Swap(int &a,int &b)

heap c++ 操作 大顶堆、小顶堆

在C++中,虽然堆不像 vector, set 之类的有已经实现的数据结构,但是在 algorithm.h 中实现了一些相关的模板函数.下面是一些示例应用 http://www.cplusplus.com/reference/algorithm/pop_heap/ #include <iostream> #include <algorithm> // make_heap(), pop_heap(), push_heap() #include <vector> using

大顶堆(c++实现)

[大顶堆的性质] 大顶堆是一棵完全二叉树,且树中的每个节点的值都不小于它的孩子节点的值.我们可以用一个heap数组来表示它. [大顶堆的插入.删除] 大顶堆的插入:首先初始化插入位置为最后,然后从下往上调整堆(调整插入元素的位置).在调整过程中,若当前节点的父亲节点小于插入元素,则将其父亲节点的值赋给当前节点,父亲节点作为当前节点,依此继续:否则当前节点即为插入位置. 大顶堆的删除:删除根,初始化最后一个元素为新根的值,然后从上往下进行调整堆(调整最后一个元素的位置).在调整的过程中,若最后一个

poj 2010 Moo University - Financial Aid 大顶堆维护最小和

题意: 有c有牛,从中选(n-1)/2头,使他们的得分中位数最大且需要的资金援助和不超过f. 分析: 堆的运用大顶堆维护最小和. 代码: //poj 2010 //sep9 #include <iostream> #include <queue> #include <algorithm> using namespace std; const int maxN=100024; int dpl[maxN],dpr[maxN]; priority_queue<int&g

wikioi 2573 大顶堆与小顶堆并用

题目描述 Description 我们使用黑匣子的一个简单模型.它能存放一个整数序列和一个特别的变量i.在初始时刻,黑匣子为空且i等于0.这个黑匣子能执行一系列的命令.有两类命令: ADD(x):把元素x放入黑匣子:GET:把i加1的同时,输出黑匣子内所有整数中第i小的数.牢记第i小的数是当黑匣子中的元素已非降序排序后位于第i位的元素. 下面的表6_4是一个11个命令的例子: 表6_4 编号 命令 i 黑匣子内容 输出 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1,

堆排序——大根堆(大顶堆)

1.小根堆 若根节点存在左子女则根节点的值小于左子女的值:若根节点存在右子女则根节点的值小于右子女的值. 2.大根堆 若根节点存在左子女则根节点的值大于左子女的值:若根节点存在右子女则根节点的值大于右子女的值. 3.结论 (1)堆是一棵完全二叉树(如果公有h层,那么1~h-1层均满,在h层连续缺失若干个右叶子). (2)小根堆的根节点的值是最小值,大根堆的根节点的值是最大值. (3)堆适合于采用顺序存储. 4.堆的插入算法 将一个数据元素插入到堆中,使之依然成为一个堆. 算法描述:先将结点插入到