大快大数据平台架构设计的构成模块

大数据也不是近几年才出现的新东西,只是最近几年才真正意义上变得热门、火爆!而这要得益于互联网信息技术的快速发展,网络改变世界、改变生活,大数据技术的应用让这样的改变更为深刻。
关注大数据或者是互联网方面新闻的人应该知道,大数据已经上升到了国家战略的高度。可以说这是时代发展的必然趋势,从国家战略层面推进大数据技术的普及与应用,一个至关重要且非常核心的问题——数据安全问题就非常突出。解决数据安全问题,必然要回归到大数据开发所使用的框架!

国内的大数据开发起步较晚于国外,所有关于大数据大开发的各种标准和规则都是采用国外的那一套。国内做大数据开发的企业或者机构组织所推出的大部分商业发行版本都是对开源程序的二次包装,从事大数据底层开发的少之又少。做大数据原生态开发且又推出商业发行版的,行业也就只有大快搜索,可能在未来的三五年内也许还会有做大数据原生态开发的出现。
为何大数据的普及度不高,主要是由于大数据的应用开发太过偏向于底层,学习的难度不是一般的大,所涉及到的技术面广太大,不是一般人所能够驾驭得了的。市场上大部分打着hadoop国产发行版,也只是把国外的拿过来重新修改了一下而已。大快DKhadoop把大数据开发中的一些通用的,重复使用的基础代码、算法封装为类库,在很大程度上降低了开发的难度。相信这个对于从事开发的人员看了就更容易懂了。
下面,就给大家介绍看一下大快的大数据开发框架的模块构成都有哪些:
大快大数据一体化开发框架主要由六部分组成:数据源与SQL引擎、数据采集(自定义爬虫)模块、数据处理模块、机器学习算法、自然语言处理模块、搜索引擎模块。

如果在开源大数据框架上部署大快的开发框架,需要平台的组件支持如下:
数据源与SQL引擎:DK.Hadoop、spark、hive、sqoop、flume、kafka
数据采集:DK.hadoop
数据处理模块:DK.Hadoop、spark、storm、hive
机器学习和AI:DK.Hadoop、spark
NLP模块:上传服务器端JAR包,直接支持
搜索引擎模块:不独立发布

原文地址:http://blog.51cto.com/13636660/2113505

时间: 2024-10-11 04:06:38

大快大数据平台架构设计的构成模块的相关文章

大数据平台架构设计探究

本文首发于 vivo互联网技术 微信公众号? 链接:https://mp.weixin.qq.com/s/npRRRDqNUHNjbybliFxOxA 作者:刘延江 近年来,随着IT技术与大数据.机器学习.算法方向的不断发展,越来越多的企业都意识到了数据存在的价值,将数据作为自身宝贵的资产进行管理,利用大数据和机器学习能力去挖掘.识别.利用数据资产.如果缺乏有效的数据整体架构设计或者部分能力缺失,会导致业务层难以直接利用大数据大数据,大数据和业务产生了巨大的鸿沟,这道鸿沟的出现导致企业在使用大数

深入浅出解析大数据平台架构

目录: 什么是大数据 Hadoop介绍-HDFS.MR.Hbase 大数据平台应用举例-腾讯 公司的大数据平台架构 "就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式--". 大数据的4V特征-来源 公司的"大数据" 随着公司业务的增长,大量和流程.规则相关的非结构化数据也爆发式增长.比如: 1.业务系统现在平均每天存储20万张图片,磁盘空间每天消耗100G: 2.平均每天产生签约视频文件6000个,每个平均2

多图技术贴:深入浅出解析大数据平台架构

目录: 什么是大数据 Hadoop介绍-HDFS.MR.Hbase 大数据平台应用举例-腾讯 公司的大数据平台架构 "就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式--". 大数据的4V特征-来源 公司的"大数据" 随着公司业务的增长,大量和流程.规则相关的非结构化数据也爆发式增长.比如: 1.业务系统现在平均每天存储20万张图片,磁盘空间每天消耗100G: 2.平均每天产生签约视频文件6000个,每个平均2

大数据平台架构技术选型与场景运用

一.大数据平台 大数据在工作中的应用有三种: 与业务相关,比如用户画像.风险控制等: 与决策相关,数据科学的领域,了解统计学.算法,这是数据科学家的范畴: 与工程相关,如何实施.如何实现.解决什么业务问题,这是数据工程师的工作. 数据工程师在业务和数据科学家之间搭建起实践的桥梁.本文要分享的大数据平台架构技术选型及场景运用偏向于工程方面. 如图所示,大数据平台第一个要素就是数据源,我们要处理的数据源往往是在业务系统上,数据分析的时候可能不会直接对业务的数据源进行处理,而是先经过数据采集.数据存储

hadoop大数据平台架构之DKhadoop详解

hadoop大数据平台架构之DKhadoop详解大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了hadoop商业版的发行.这里就通过大快DKhadoop为大家详细介绍一下hadoop大数据平台架构内容.目前国内的商业发行版hadoop除了大快DKhadoop以外还有像华为云等.虽然发行方不同,但在平台架构上相似,这里就以我比较熟悉的dkhadoo

大数据平台架构组件选择与运用场景

一.大数据平台 大数据在工作中的应用有三种: 与决策相关,数据科学的领域,了解统计学.算法,这是数据科学家的范畴: 与工程相关,如何实施.如何实现.解决什么业务问题,这是数据工程师的工作. 数据工程师在业务和数据科学家之间搭建起实践的桥梁.本文要分享的大数据平台架构技术选型及场景运用偏向于工程方面. 如图所示,大数据平台第一个要素就是数据源,我们要处理的数据源往往是在业务系统上,数据分析的时候可能不会直接对业务的数据源进行处理,而是先经过数据采集.数据存储,之后才是数据分析和数据处理. 从整个大

大快大数据技术架构的构成模块

大数据也不是近几年才出现的新东西,只是最近几年才真正意义上变得热门.火爆!而这要得益于互联网信息技术的快速发展,网络改变世界.改变生活,大数据技术的应用让这样的改变更为深刻. 关注大数据或者是互联网方面新闻的人应该知道,大数据已经上升到了国家战略的高度.可以说这是时代发展的必然趋势,从国家战略层面推进大数据技术的普及与应用,一个至关重要且非常核心的问题--数据安全问题就非常突出.解决数据安全问题,必然要回归到大数据开发所使用的框架! 国内的大数据开发起步较晚于国外,所有关于大数据大开发的各种标准

一个常见大数据平台架构

一个常见的大数据平台架构 这是一个典型的大数据架构,且对架构进行了「分层」,分为「数据源层」.「数据传输层」.「数据存储层」.「编程模型层」和「数据分析层」,如果继续往上走的话,还有「数据可视化层」和「数据应用层」. 原文地址:https://www.cnblogs.com/doit8791/p/9630765.html

阿里如何实现秒级百万TPS?搜索离线大数据平台架构解读读后感

阅读文章:阿里如何实现秒级百万TPS?搜索离线大数据平台架构解读 文章网址:https://mp.weixin.qq.com/s?__biz=MzIzOTU0NTQ0MA==&mid=2247488245&idx=1&sn=1c70a32f11da7916cb402933fb65dd9f&chksm=e9292ffade5ea6ec7c6233f09d3786c75d02b91a91328b251d8689e8dd8162d55632a3ea61a1&scene=2