Coursera-AndrewNg(吴恩达)机器学习笔记——第三周

一.逻辑回归问题(分类问题)

  1. 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件;判断肿瘤是恶性还是良性等。机器学习中逻辑回归便是解决分类问题的一种方法。
    二分类:通常表示为y?{0,1},0:“Negative Class”,1:“Possitive Class”。
  2. 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1):

    其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下:

    理解预测函数hθ(x)的意义:其实函数hθ(x)的值是系统认为样本值Y为1的概率大小,可表示为hθ(x)=P(y=1|x;θ)=1-P(y=0|x;θ).

  3. 决策边界(Decision boundary):y=0和y=1的分界线,由逻辑函数图形可知,当y=1时,g(z)>=0.5,z>=0,也就是说θTX>=0,这样我们就可以通过以xi为坐标轴,作出θTX=0这条直线,这条直线便是决策边界。如下图所示:
  4. 代价函数(Cost Function)J(θ):一定要是一个凸函数(Convex Function),这样经过梯度下降方便找到全局最优 。

    根据以上两幅图我们可以看出,当预测值hθ(x)和实际值结果y相同时,代价值为0;当预测值hθ(x)和实际结果y不同时,代价值无穷大。组合在一起可以写为:

    向量化后可写为:
  5. 梯度下降算法:和线性回归中使用的一样

    向量化:
  6. 高级优化方法(用来代替梯度下降选择参数θ):Conjugate gradient(共轭梯度法)、BFGS、L-BFGS,只需要掌握用法即可,不需了解原理。
    优点:不需要手动选择学习速率α,收敛速度比梯度下降快,更复杂。
    %首先写一个函数用来计算代价函数和代价函数的梯度function [jVal, gradient] = costFunction(theta)
      jVal = [...code to compute J(theta)...];
      gradient = [...code to compute derivative of J(theta)...];
    end
    
    %然后在命令行中通过调用fminunc()函数来计算参数θ

    options = optimset(‘GradObj‘, ‘on‘, ‘MaxIter‘, 100);
    initialTheta = zeros(2,1);
    [optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

  7. 多分类问题:可以转化为n+1个二分类问题看待,如下:


    通过这种形式,我们可以预测出结果最接近哪个y值。

二.过拟合问题和解决方法

  1. Underfit:欠拟合问题具有高偏差;Overfit:过拟合问题具有高方差。
  2. 过拟合的定义:如果训练集中有过多的特征项,训练函数过于复杂,而训练数据又非常少。我们学到的算法可能会完美的适应训练集,也就是说代价会接近与0。但是却没有对新样本的泛化能力。
  3. 解决方法:手动的选择合适的特征;或者使用模型选择算法(用来选取特征变量)。
  4. 正规化(Regularization):正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值的大小θ(j)),相当于减少参数θ(j)所对应的多项式对整个预测函数的影响。以下内容以线性回归为例。
    正规化代价函数:其中λ过大会导致欠拟合。


    正规化梯度下降:θ0不需要

    其中当参数Θ不为θ0时,梯度下降形式又可以改写为:

    正规化正规方程:其中L为(n+1)*(n+1)维矩阵。

  5. 正规化逻辑回归:

    代价函数:

    梯度下降形式和线性回归相同。

  6. 正规化逻辑回归中高级的求解参数θ方法:
     



    无~~~~

原文地址:https://www.cnblogs.com/LoganGo/p/8562575.html

时间: 2024-11-06 09:55:22

Coursera-AndrewNg(吴恩达)机器学习笔记——第三周的相关文章

吴恩达机器学习笔记-第三周

六.逻辑回归 6.1 分类问题 对于二分类问题, 我们一般将结果分为0/1,在理解逻辑回归时可以引入感知机,感知机算是很早的分类器,但因为感知机是分布函数,也就是输出的值小于某一临界值,则分为-1,大于某一临界值,则分为1,但由于其在临界点处不连续,因此在数学上不好处理,而且感知机分类比较粗糙,无法处理线性不可分的情况,因此引入了逻辑回归,逻辑回归相当于用一个逻辑函数来处理回归的值,导致最终输出的值在[0, 1]范围内,输入范围是?∞→+∞,而值域光滑地分布于0和1之间. 小于0.5的分为0类,

Coursera-AndrewNg(吴恩达)机器学习笔记——第一周

一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习

吴恩达第一课第三周随笔

2.1 双层神经网络 图 1 图 2 图1是一个双层网络模型,实际上有三层,但是通常把输入层给忽略掉 称为输入层 注意层了,图1层有4个节点,图2只要1个, 所以图1 应该是一个(4,3)的矩阵,图2的是一个(1,3)的矩阵 ps:坚持将前一层的特征的权重做成一列放入矩阵中,所以每一个都是(3,1)的列向量 以前一直都是使用,np.dot(.T,X),这里也同样也沿用这个设定 所以,所以 是一个(4,3)矩阵 ,b是一个[4,1]的列向量,要生成矩阵节点在前 图1的正向传播算法: A,Z的横向表

吴恩达“机器学习”——学习笔记五

朴素贝叶斯算法(Naive Bayes)(续学习笔记四) 两个朴素贝叶斯的变化版本 x_i可以取多个值,即p(x_i|y)是符合多项式分布的,不是符合伯努利分布的.其他的与符合伯努利的情况一样.(同时也提供一种思路将连续型变量变成离散型的,比如说房间的面积可以进行离散分类,然后运用这个朴素贝叶斯算法的变形). 第二个朴素贝叶斯的变化形式专门用来处理文本文档,即对序列进行分类,被称为朴素贝叶斯的事件模型(event model).这将使用一种不同的方式将邮件转化为特征向量. 之前的特征向量是:向量

【吴恩达机器学习】学习笔记——2.1单变量线性回归算法

1 回顾1.1 监督学习定义:给定正确答案的机器学习算法分类:(1)回归算法:预测连续值的输出,如房价的预测(2)分类算法:离散值的输出,如判断患病是否为某种癌症1.2 非监督学习定义:不给定数据的信息的情况下,分析数据之间的关系.聚类算法:将数据集中属性相似的数据点划分为一类. 2 单变量线性回归算法2.1 符号定义m = 训练样本的数量x = 输入变量y = 输出变量2.2 工作方式训练集通过学习算法生成线性回归函数hypothesis  hθ(x) = θ0 + θ1x 原文地址:http

吴恩达“机器学习”——学习笔记二

定义一些名词 欠拟合(underfitting):数据中的某些成分未被捕获到,比如拟合结果是二次函数,结果才只拟合出了一次函数. 过拟合(overfitting):使用过量的特征集合,使模型过于复杂. 参数学习算法(parametric learning algorithms):用固定的参数进行数据的拟合.比如线性回归. 非参数学习算法(non-parametric learning algorithms):使用的参数随着训练样本的增多而增多. 局部加权回归(locally weighted r

吴恩达“机器学习”——学习笔记四

生成学习算法 判别算法:进行P(y|x)的计算或者是进行h(x)(其中h只会是0与1)的计算. 生成学习算法:进行P(x|y)的建模,即给定类的条件下,某种特征显示的结果.同时也会对P(y)进行建模. 根据贝叶斯公式,我们可以得到,其中p(x) = p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0).实际上,如果我们计算P(y|x)进行预测,我们不必计算分母的值,因为x是独立于y的,所以argmax是当式子取到最大值时,对应参数的取值. 高斯判别分析 多元高斯分布 如

【吴恩达机器学习】学习笔记——1.5无监督学习

1 无监督学习:在不知道数据点的含义的情况下,从一个数据集中找出数据点的结构关系. 2 聚类算法:相同属性的数据点会集中分布,聚集在一起,聚类算法将数据集分成不同的聚类.也就是说,机器不知道这些数据点具体是什么属性,到底是干什么的,但是可以将具有相同属性的数据点归为一类. 3 无监督学习的应用: 大型计算机集群:找出趋于协同工作的机器,将其放在一起将提高效率 社交网络分析:找出哪些人之间是好朋友的关系,哪些仅仅是认识 市场分割:将客户分类,找出细分市场,从而更有效的进行销售 天文数据分析:星系是

【吴恩达机器学习】学习笔记——代价函数

单变量线性回归函数  hθ(x) = θ0 + θ1x 为了使线性回归函数对数据有较好的预测性,即y到h(x)的距离都很小. 原文地址:https://www.cnblogs.com/JJJanepp/p/8453321.html