ZROI 19.08.05模拟赛

传送门

写在前面:为了保护正睿题目版权,这里不放题面,只写题解。


  • A

\(21pts:\)

随便枚举,随便爆搜就好了。

\(65pts:\)

比较显然的dp,设\(f_{i,j,k}\)表示在子树\(i\)中,两个赞助商分别选了\(j,k\)个的最优解。

对枚举的上下界卡的紧一点,按照树上背包的聚合分析,复杂度是\(O(n^3)\)的,可以通过。

\(100pts:\)

观察数据范围可以发现,这题的子树大小限制可以抽象成一个经典的网络流模型。

跑一个最大费用流就好了。

我写丑了,每个点拆了\(5\)个点出来,然而还是跑的飞快。


  • B

\(22pts:\)

枚举全排列/状压。

\(100pts:\)

这题非正解不太好写,直接上正解吧。

先考虑什么时候无解。随便弄一棵生成树出来,如果\(\sum a_i<\sum w_i\),显然无解。

现在我们要证明,只要\(\sum a_i \geq \sum w_i\),一定有解。

考虑我们缩点缩到一个局面,此时所有边都无法缩起来。此时对于每条边\((u_i,v_i,w_i)\),都有\(w_i>a_{u_i}+a_{v_i}\)。

将所有不等式加起来,我们得到\(\sum w_i > \sum a_i\cdot dgr_i\geq \sum a_i\),显然与我们之前的假设矛盾。

所以,我们证明了对于一棵生成树,只要\(\sum a_i \geq \sum w_i\),一定有解。那么显然取最小生成树最优。

那么我们考虑对一个满足\(\sum a_i \geq \sum w_i\)的树,如何构造出一种方案。

首先设\(s_i=a_i + \sum_{j\in subtree_i} a_j-w_{(j,fa_j)}\),即\(i\)点子树中所有点权和与边权和之差。

对每个点\(i\),我们算出它的每个儿子\(j\)的\(s_j-w_{(j,i)}\),设这个值为\(v_j\),按照\(v_j\)把它的儿子从大到小排序。(\(v_j\)的实际意义在于,将子树\(j\)的所有点连接到父亲上之后,父亲点权的增量)

对于一个儿子\(j\),如果\(s_j\geq 0\),则先递归处理这个儿子,再连接它与父亲之间的边。

否则,这个儿子无法自己处理子树中的边,需要先连接父亲与它的边,再递归处理子树,并将父亲剩余的权值传递下去。

正确性存疑的地方只有连接某个儿子时,由于减去了某条边的权值,权值和可能\(<0\)。

发现对于\(v_i\geq 0\)的点,连接后一定会使父亲的剩余权值增大,不会影响。

否则,此后的点\(v_i\)均为负。由于最后父亲剩余权值\(\geq 0\),则在这个不断减小的过程中也不会\(<0\)。

实现时,发现一个儿子的影响只和\(v_i\)的正负性有关,因此并不需要排序,只需扫两遍,先取\(v_i\geq 0\)的儿子,再取\(v_i<0\)的儿子即可。

复杂度\(O(n\log n)\),瓶颈在于求mst时的排序。


  • C

\(6pts:\)

显然质数的答案一定是\(0\)。

\(34pts:\)

爆搜+打表,可以过掉\(n\leq 100\)。

\(51pts:\)

看到出题人完全平方,就很容易想到质因数异或线性基。

用bitset维护每个质数,复杂度\(O(\frac{n^4}{64\ln ^2n})\),实现优秀可过\(n\leq 1000\)。

\(100pts:\)

设\(g(x)\)为\(x\)向左找到的最近的数,即与\(f(x)\)意义类似,只是方向相反的函数。

发现\(f(x)\)与\(g(x)\)互为反函数。

证明:假设从\(f(x)\)向左找到的第一个位置为\(y>x\),则我们把两次找到的序列取对称差(即异或),则得到的新序列也是完全平方数,发现由于\(f(x)\)在两个序列里都出现了,且\(x\)只出现了一次,所以可以找到一个左端点为\(x\),右端点\(<f(x)\)的序列,与\(f(x)\)是向右找到最近的数矛盾。

也就是说,每个合数都有且仅有一个互不相同的解,且答案为\(g(x)\)。

考虑从\(x\)往前扫,每次加入一个\(l\),看是否线性无关即可。复杂度\(O(\frac{n^3}{64\ln ^2n})\),好像没什么用。

发现超过\(\sqrt n\)的质数只会有一个,在线性基上特判一下即可。

不超过\(1000\)的质数只有\(168\)个,复杂度\(O(\frac{168^2\times n}{128})\),由于对于实际上跑不满(比如答案不会超过\(\frac n2\)),所以可过。

原文地址:https://www.cnblogs.com/suwakow/p/11375082.html

时间: 2024-10-09 00:03:07

ZROI 19.08.05模拟赛的相关文章

ZROI 19.08.07模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 A R爷再次翻车,搞出来了一道六年前的CF题. \(100pts:\) 然而不是原题也很简单,斜率优化板子,单调队列搞一下就完事了. 也可以wqs二分,复杂度可以做到\(O(m\log m)\),\(与\)p\(无关.所以R爷差点把\)p$出到\(10^5\). B 本题乱搞做法非常多,所以R爷动用了权限来

ZROI 19.08.09模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当且仅当栈为空. 枚举起点,暴力模拟即可.复杂度\(O(n^2)\). \(100pts:\) 对于一个右端点,考虑哪些左端点可以和它匹配. 发现所有合法的左端点,两者栈的内容都是相等的,可以Hash判断. 实际上考虑每次加入字符时,只会在末尾变动一次,可以用trie树维护.复杂度\(O(\sigma

ZROI 19.08.04模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "这应该是正睿OI历史上第一次差评破百的比赛." "这说明来正睿集训的人越来越多了." "我很不能理解差评,因为在比赛开始前就有超过\(40\)个差评了." 天祺鸽鸽nb! A "这题标程是线性的,可是为什么没有出\(5\times 10^6\)呢?因为spj要带个\(\log\),这样就T了." \(100pts:\) 打表观察发现有解当且仅当\(\sum k

ZROI 19.08.12模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) 考虑不输出方案怎么做.显然是树形dp. 设\(f_{i,j,\{0/1/2\}}\)表示\(i\)的子树中,有\(j\)条链,根节点状态为:\(\{\)没选\(/\)选了向下的一条链\(/\)选了向下的两条链\(\}\)的最优解. 对于一棵子树,开始时只考虑根节点,依次合并每个儿子.合并时需要枚举父亲和儿子

ZROI 19.08.10模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操作后还原.复杂度\(O(3^n)\). 全0或全1可以直接返回. 写法优秀可以过\(80pts\). \(100pts:\) 类似非递归fft的写法,bitrev后可以位运算优化. 最下面四层可以预处理,复杂度\(O(3^{n-4})\). 然后疯狂卡常就完事了( 然而由于swk人菜常数大,明明所有

ZROI 19.08.11模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts:\) \(a=50\),构造\(1\)和所有元素交换的排列,实现交换\((v,u)\)可以令两者分别与\(1\)交换,选择排序即可. \(40pts:\) \(a=30\),构造前\(25\)个元素与\(1\)交换的排列,另有一个排列交换前\(25\)个与后\(25\)个元素. \(a=20\)时

ZROI 19.08.08模拟赛

传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 首先恭喜swk今天翻车! "小心大样例演你."--天祺鸽鸽 果然swk今天被大样例演死了,天祺鸽鸽诚不欺我! A 这题标程是前几天ACM赛的双栈背包-- 然而可以排序之后直接背包,\(O(nm)\)随便过( B 菜 swk 菜 发现答案就是子串中最长border,即串长减去最短循环节. 每个字母是独立的,可以分开计算答案. 对第\(i\)个字母,设循环节循环次数为\(k\),在循环节内的长度为\(f_i\),剩余的长度为

ZROI 19.08.02 杂题选讲

给出\(n\)个数,用最少的\(2^k\)或\(-2^{k}\),使得能拼出所有数,输出方案.\(n,|a_i|\leq 10^5\). 显然一个绝对值最多选一次.这个性质非常强. 如果所有都是偶数,可以直接除以\(2\). 否则\(1\)或\(-1\)必须选,暴力枚举选哪个然后递归,每层去重,发现最多只会递归\(\log a\)次.总复杂度\(O((n+a)\log n)\),等价于线段树上区间长度总和. \(n\)个数,每次可以花费\(1\)的代价给某个数\(+1\)或\(-1\),问变成不

2019.08.06模拟赛T2

题目大意 已知三个$n$位二进制数$A$,$B$,$C$. 满足: $A+B=C$ 它们二进制位中$1$的个数分别为$a$,$b$,$c$. 求满足条件的最小的$C$. Solution 唉,又是一道随缘猜结论的题,可惜极限数据卡掉了我一个点,开大数组就A了..... 通过打表,我们发现所有的最优解中都有一种情况是$A$的二进制位的$1$是连续一段. 原文地址:https://www.cnblogs.com/ldysy2012/p/11311281.html