权值线段树&&可持久化线段树&&主席树

权值线段树

顾名思义,就是以权值为下标建立的线段树。

现在让我们来考虑考虑上面那句话的产生的三个小问题:

1. 如果说权值作为下标了,那这颗线段树里存什么呢?
————— 这颗线段树中, 记录每个值出现的次数

2.权值很大怎么办?数组空间不够啊
————— 可以先离散化,再记录

3.那权值线段树到底是用来干嘛的呢?
————— 可以快速求出第k小值(其实主要还是为了主席树做铺垫啦)

那第k小值该怎么求呢???
从树根依次往下
若当前值K大于左儿子的值,则将K-=左儿子的值,然后访问右儿子
若当前值K小于左儿子的值,则直接访问左儿子
直到访问到叶子节点时,那么该节点所代表的那个数就是要求的第k小值
(因为其实节点中存的值是该值域区间的数字出现次数,所以第k小值前面一定会有k-1个数出现过)

代码就不给了

可持久化线段树

普通的线段树单点修改操作与区间查询自然不是问题
可是
假如当前询问若干修改操作之前的区间呢???

仔细想想
.
.
.
最暴力的做法无疑是对于每个修改操作重开一个线段树,
可是...这样显然空间开不下
那我们能不能优化一下呢

我们看看对于一次单点修改,这颗线段树操作前和操作后有什么不同吧

有点小丑,凑合着看
观察一下这两颗树,发现它们有区别的地方仅仅在于红色的方框
哎??? 这不是此次操作修改的目标元素到根的路径吗

既然只有这条路径变了,那我们就只复制这条路径好了,不用再复制整棵树了
所以空间就能大大的缩小了(log级)

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define get getchar()
#define in inline
in int read()
{
    int x=1,t=0; char ch=get;
    while((ch<'0' || ch>'9') && ch!='-') ch=get;
    if(ch=='-') ch=get,x=-1;
    while(ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
    return t*x;
}
const int _=1e6+6;
int n,m,a[_],tot,root[_<<5],ls[_<<5],rs[_<<5],val[_<<5]; // ls == leftson,rs == rightson
in int build(int l,int r)
{
    int now=++tot;
    if(l==r)
    {
        ls[now]=rs[now]=0;
        val[now]=a[l];
        return now;
    }
    int mid=(l+r)>>1;
    ls[now]=build(l,mid);
    rs[now]=build(mid+1,r);
    return now;
} //初始时的线段树
in int add(int k,int l,int r,int x,int t)
{
    int now=++tot;
    if(l==r)
    {
        val[now]=t;
        ls[now]=rs[now]=0;
        return now;
    } //到了目标点,修改它
    ls[now]=ls[k],rs[now]=rs[k];
    int mid=(l+r)>>1;
    if(x<=mid) ls[now]=add(ls[now],l,mid,x,t); //若目标点在原树的左子树上,则新建左儿子
    else rs[now]=add(rs[now],mid+1,r,x,t); //若在右儿子上,同理
    return now;
} //修改并添加新路径
in int query(int k,int l,int r,int x)
{
    if(l==r) return val[k];
    int mid=(l+r)>>1;
    if(x<=mid) return query(ls[k],l,mid,x);
    else return query(rs[k],mid+1,r,x);
} //查询
int main()
{
    n=read(),m=read();
    for(re int i=1;i<=n;i++)
        a[i]=read();
    root[0]=build(1,n);
    for(re int i=1;i<=m;i++)
    {
        int v=read(),o=read();
        if(o==1)
        {
            int x=read(),y=read();
            root[i]=add(root[v],1,n,x,y);
        }
        else
        {
            int x=read();
            cout<<query(root[v],1,n,x)<<endl;
            root[i]=root[v];
        }
    }
    /*for(re int i=0;i<=10;i++)
    {
        cout<<"case #"<<i<<":    ";
        for(re int j=1;j<=n;j++)
        cout<<query(root[i],1,n,j)<<' ';
        cout<<endl;
    }//打印每个历史版本 */
    return 0;
}
/*
 9.30 By yzhx
*/

静态主席树

可以用来求区间第k小/大值

说白了,就是把我们上面讲到的两个东西加起来,也就是用 可持久化权值线段树

再来看建树的具体步骤:
1.建一颗空线段树
2.依次把每个值加入这颗线段树(看做是一个修改操作)

查询:
(若当前查询的区间 l~r)
则直接把历史版本r 与 历史版本l-1, 直接加减,就能得到当前这个区间每个数出现的情况了

代码 (洛谷模板)

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define in inline
#define get getchar()
in int read()
{
    int t=0,x=1; char ch=get;
    while((ch<'0' || ch>'9') && ch!='-') ch=get;
    if(ch=='-') ch=get,x=-1;
    while( ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
    return t*x;
}
const int _=2e5+5;
int tot,cnt,n,m,a[_],b[_],sum[_<<6],ls[_<<6],rs[_<<6],root[_];
in int build(int l,int r)
{
    int now=++cnt;
    if(l==r)
    {
        sum[now]=ls[now]=rs[now]=0;
        return now;
    }
    int mid=(l+r)>>1;
    ls[now]=build(l,mid),rs[now]=build(mid+1,r);
    return now;
} //建一颗空树
in int add(int k,int l,int r,int x)
{
    int now=++cnt;
    if(l==r)
    {
        ls[now]=rs[now]=0;
        sum[now]=sum[k]+1;
        return now;
    }
    int mid=(l+r)>>1;
    ls[now]=ls[k],rs[now]=rs[k],sum[now]=sum[k];
    if(x<=mid) ls[now]=add(ls[k],l,mid,x);
    else rs[now]=add(rs[k],mid+1,r,x);
    sum[now]=sum[rs[now]]+sum[ls[now]];
    return now;
} //加入每个元素
in int query(int k1,int k2,int l,int r,int x)
{
    if(l==r) return a[l];
    int mid=l+r>>1;
    int t=sum[ls[k2]]-sum[ls[k1]];
    if(x<=t) return query(ls[k1],ls[k2],l,mid,x);
    else return query(rs[k1],rs[k2],mid+1,r,x-t);
} //查询
int main()
{
    n=read(),m=read();
    for(re int i=1;i<=n;i++)
        b[i]=a[i]=read();
    sort(a+1,a+n+1);
    tot=unique(a+1,a+n+1)-(a+1);
    root[0]=build(1,n);
    for(re int i=1;i<=n;i++)
    {
        //  if(i<=tot) cout<<a[i]<<' ';
        int x=lower_bound(a+1,a+tot+1,b[i])-a;
        root[i]=add(root[i-1],1,tot,x);
    }
    //cout<<endl;
    for(re int i=1;i<=m;i++)
    {
        int l=read(),r=read(),k=read();
        printf("%d\n",query(root[l-1],root[r],1,tot,k));
    }
}

原文地址:https://www.cnblogs.com/yzhx/p/11615616.html

时间: 2024-10-14 08:23:46

权值线段树&&可持久化线段树&&主席树的相关文章

主席树/函数式线段树/可持久化线段树

什么是主席树 可持久化数据结构(Persistent data structure)就是利用函数式编程的思想使其支持询问历史版本.同时充分利用它们之间的共同数据来减少时间和空间消耗. 因此可持久化线段树也叫函数式线段树又叫主席树. 可持久化数据结构 在算法执行的过程中,会发现在更新一个动态集合时,需要维护其过去的版本.这样的集合称为是可持久的. 实现持久集合的一种方法时每当该集合被修改时,就将其整个的复制下来,但是这种方法会降低执行速度并占用过多的空间. 考虑一个持久集合S. 如图所示,对集合的

主席树 | | 可持久化线段树

可持久化数据结构(Persistent data structure)就是利用函数式编程的思想使其支持询问历史版本.同时充分利用它们之间的共同数据来减少时间和空间消耗. 所以这里讲的可持久化线段树也叫函数式线段树(又叫主席树……因为先驱就是fotile主席Orz……). 先了解一下主席树 http://seter.is-programmer.com/posts/31907.html    很详细的介绍了函数式线段树(主席树). 主席树其实就是很多棵线段树,由于每次更新只需要更新logN个节点,所

可持久化数据结构之主席树

转自:http://finaltheory.info/?p=249 HomeACM可持久化数据结构之主席树 06十2013 可持久化数据结构之主席树 Written by FinalTheory on. Posted in ACM 引言 首先引入CLJ论文中的定义: 所谓的“持久化数据结构”,就是保存这个数据结构的所有历史版本,同时利用它们之间的共用数据减少时间和空间的消耗. 本文主要讨论两种可持久化线段树的算法思想.具体实现以及编码技巧. 核心思想 可持久化线段树是利用函数式编程的思想,对记录

BZOJ 2527 Poi2011 Meteors 整体二分+线段树 / 可持久化线段树(MLE)

题目大意:给定一个环,每个节点有一个所属国家,k次事件,每次对[l,r]区间上的每个点点权加上一个值,求每个国家最早多少次操作之后所有点的点权和能达到一个值 首先我们考虑暴力想法 对于每个国家分开讨论 二分操作次数 但是这样每次Judge的时候我们要模拟1~mid所有的操作 浪费在这里的复杂度实在太大 这样做每个国家需要模拟O(klogk)次操作 时间复杂度O(nklogk) TLE 我们需要对浪费在这里的复杂度做一些改进 1.可持久化线段树(MLE) 每次二分一个mid之后 我们要找到mid次

归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665

如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k大 ,,,, 这个问题的通用算法是 划分树,, 说白一点就是把快速排序的中间结果存起来, 举个栗子 原数列 4 1 8 2 6 9 5 3 7 sorted 1 2 3 4 5 6 7 8 9 ........................... qs[0] 4 1 8 2 6 9 5 3 7 q

[TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]

按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <ctime> #include <vector> using

BZOJ 3439 Kpm的MC密码 Trie树+可持久化线段树

题目大意:给定n个字符串,对于每个字符串求以这个字符串为后缀的字符串中第k小的编号 首先将字符串反转 那么就变成了对于每个字符串求以这个字符串为前缀的字符串中第k小的编号 然后考虑对字符串排序 那么对于每个字符串以它为前缀的字符串一定是连续的 那么就转化成了区间第k小 这个用可持久化线段树可以解决 排序自然不能直接排 既然是字符串 考虑Trie树+DFS即可 注意字符串有重复的 小心 #include <vector> #include <cstdio> #include <

[POJ2104/HDU2665]Kth Number-主席树-可持久化线段树

Problem Kth Number Solution 裸的主席树,模板题.但是求k大的时候需要非常注意,很多容易写错的地方.卡了好久.写到最后还给我来个卡空间. 具体做法参见主席树论文<可持久化数据结构研究>. AC Code #include "cstdio" #include "iostream" #include "cstring" #include "algorithm" using namespace

spoj3267 D-query 主席树(可持久化线段树)

题目链接 题意:给n个数,m次查询,求[l,r]之间不重复数的个数. 思路:主席树.用一个map记录每个值在当前操作下最新的位置,从前往后插入主席树.对于查询[l,r],窝们在root[ l ]下查询在r之前的不重复数的个数.详见代码: /********************************************************* file name: spoj3267.cpp author : kereo create time: 2015年04月04日 星期六 14时2