LeetCode 59 Permutation Sequence

The set [1,2,3,…,n] contains a total of n!
unique permutations.

By listing and labeling all of the permutations in order,

We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

思路,使用字典序法,与http://blog.csdn.net/mlweixiao/article/details/38897499

public class Solution {

	private void nextPermutation(int[] num) {
		int i;
		int cur = -1;
		int temp;
		// find the last increase sequence
		for (i = num.length - 1; i >= 1; i--) {
			if (num[i] > num[i - 1]) {
				cur = i - 1;
				break;
			}
		}

		// if the increase sequence exists,
		// swap the cur and the last one(bigger than it)
		if (cur != -1) {
			for (i = num.length - 1; i > cur; i--) {
				if (num[i] > num[cur]) {
					temp = num[cur];
					num[cur] = num[i];
					num[i] = temp;
					break;
				}
			}
		}

		for (i = cur + 1; 2 * i <= cur + num.length - 1; i++) {
			temp = num[i];
			num[i] = num[num.length - i + cur];
			num[num.length - i + cur] = temp;
		}
	}

    public String getPermutation(int n, int k) {
        int [] temp=new int[n];
        StringBuffer s=new StringBuffer("");

        for(int i=0;i<n;i++){
        	temp[i]=i+1;
        }
        for(int i=1;i<k;i++){
        	nextPermutation(temp);
        }

        for(int i=0;i<n;i++){
        	s.append(temp[i]);
        }
        return s.toString();
    }
}
时间: 2024-12-26 09:00:26

LeetCode 59 Permutation Sequence的相关文章

【leetcode】 Permutation Sequence

问题: 对于给定序列1...n,permutations共有 n!个,那么任意给定k,返回第k个permutation.0 < n < 10. 分析: 这个问题要是从最小开始直接到k,估计会超时,受10进制转换为二进制的启发,对于排列,比如 1,2,3 是第一个,那么3!= 6,所以第6个就是3,2,1.也就是说,从开始的最小的序列开始,到最大的序列,就是序列个数的阶乘数.那么在1,3 , 2的时候呢?调整一下,变成2,1,3,就可以继续. 实现: int getFactorial(int n

Leetcode 60. Permutation Sequence

The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): Given n and k, return the kth permutation sequence. Note: Given n will be between

【leetcode】 Permutation Sequence (middle)

The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3

[C++]LeetCode: 114 Permutation Sequence(返回第k个阶乘序列——寻找数学规律)

题目: The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q

【LeetCode】Permutation Sequence

Permutation Sequence The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" &q

leetcode 60 Permutation Sequence ----- java

The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3

leetcode 之 Permutation Sequence

Permutation Sequence The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" &

leetCode 60.Permutation Sequence (排列序列) 解题思路和方法

The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "

19.2.9 [LeetCode 60] Permutation Sequence

The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, we get the following sequence for n = 3: "123" "132" "213" "231" "312" "321&