Even and Odd Functions

\subsection{Even and Odd Functions}

For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
calling the function \textbf{even}\index{even functions} or
\textbf{odd}\index{odd functions}.

An \textbf{even function} means $f(-x)=f(x)$.
An example of an even function is the function $f(x)=x^2$.
  \begin{figure}[H]
    \begin{center}
      \begin{tikzpicture}
        \begin{axis}[
            ylabel={$f(x)=x^2$},
            axis x line=bottom,
            axis y line=center,
            tick align=outside,
            yticklabels={,,}
            xticklabels={,,}
            xtickmax=10,
          ]
          \addplot[smooth,red]{x^2};
        \end{axis}
      \end{tikzpicture}
    \end{center}
    \caption{$f(x)=x^2$ is an \emph{even function}.}
  \end{figure}
  An \textbf{odd function} means $f(-x)=-f(x)$. An example of this is the
  function $f(x)=x^3$.
  \begin{figure}[H]
    \begin{center}
      \begin{tikzpicture}
        \begin{axis}[
            ylabel={$f(x)=x^3$},
            axis x line=bottom,
            axis y line=center,
            tick align=outside,
            yticklabels={,,}
            xticklabels={,,}
            xtickmax=10,
          ]
          \addplot[smooth,red]{x^3};
        \end{axis}
      \end{tikzpicture}
    \end{center}
    \caption{$f(x)=x^3$ is an \emph{odd function}.}
  \end{figure}
\subsection{Surjective, Injective, and Bijective Functions}

  \index{one-to-one}
  \index{injective}
  If each $f(x)$ value produced by a function $f$ can only be obtained by one
  unique $x$ value, then we say $f$ is \textbf{injective}, or
  \textbf{one-to-one}.

  $ f: D \to R $ is injective or one-to-one iff
  \[
    \forall{(x_1 \wedge x_2 \in D)}
    \big[f(x_1)=f(x_2)
    \to x_1=x_2\big].
  \]
  \begin{remark}
    This also means that for injective functions,
    $ x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
  \end{remark}

\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not \emph{one-to-one} because
        there are two possible $x$-values that can produce each given
        $y$-value.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because every
        given $y$-value is mapped from a unique $x$-value.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}
  A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
  line at most once.\index{horizontal line test}

  \index{onto}
  \index{surjective}
  $f: D \to R $ is \textbf{surjective} or \textbf{onto} iff
    \[\forall (y \in R) \exists  (x \in D) \big[f(x)=y\big]. \]

\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not \emph{surjective} because
        the values $(-\infty, 0)$ are never reached in its range.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because all $y$ values from $-\infty, \infty)$ have corresponding $x$-values.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}

    \index{bijective}
    A function $f:A \to B$ is \textbf{bijective} iff it is \emph{both injective and surjective}.

\begin{figure}[H]
    \begin{center}
        \subfigure[The function $f(x)=x^2$ is not bijective.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^2$},
                xlabel={$x$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,red]{x^2};
            \end{axis}
          \end{tikzpicture}
        }
        \hspace{0.2in}%
        \subfigure[The function $f(x)=x^3$ is bijective.]
        {          \begin{tikzpicture}
            \begin{axis}[
                ylabel={$f(x)=x^3$},
                xlabel={$x$},
                axis x line=bottom,
                axis y line=center,
                tick align=outside,
                yticklabels={,,}
                xticklabels={,,}
                xtickmax=10,
              ]
              \addplot[smooth,blue]{x^3};
            \end{axis}
          \end{tikzpicture}
        }
    \end{center}
  \end{figure}

\subsection{Graphs} \index{graphs}

  \index{graph}
    If $f$ is a function with a domain $D$, then its \textbf{graph} is the set
    \[ \Big\{ \big( x,f(x) \big) \Big | x \in D \Big\},\]
    that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
\footnote{Here, the difference between the words \emph{graph} and \emph{plot} is sometimes confusing. Technically speaking, a \emph{graph} is the set defined explicitly here, while a function‘s \emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either \emph{graph} or \emph{plot} hereafter simply refer to the pictorial representation of a function‘s graph in the form of a curve on the cartesian plane.}

If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
This height might be positive or negative, depending on the sign of $f(x)$.
We use this height relationship to plot functions.
\begin{figure}[H]
    \begin{center}
        \begin{tikzpicture}
          \begin{axis}[
              ylabel={$f(x)$},
              xlabel={$x$},
              axis x line=bottom,
              axis y line=center,
              tick align=outside,
              yticklabels={,,}
              xticklabels={,,}
              xtickmax=10,
            ]
            \addplot[smooth,red]{x+2};
          \end{axis}
        \end{tikzpicture}
      \caption{A plot of the function $f(x)=x+2$}
    \end{center}
  \end{figure}
时间: 2024-10-11 05:51:14

Even and Odd Functions的相关文章

【JavaScript】Understanding callback functions in Javascript

Callback functions are extremely important in Javascript. They’re pretty much everywhere. Originally coming from a more traditional C/Java background I had trouble with this (and the whole idea of asynchronous programming), but I’m starting to get th

理解callback function in javascript

以下内容主要摘自[1,2] (1)In javascript, functions are first-class objects, which means functions can be used in a first-class manner like objects, since they are in fact objects themselves: They can be “stored in variables, passed as arguments to functions,

Legendre polynomials

In mathematics, Legendre functions are solutions to Legendre's differential equation: In particular, it occurs when solving Laplace's equation (and relatedpartial differential equations) in spherical coordinates. The polynomials may be denoted by Pn(

Using Single-Row Functions to Customize Output使用单行函数自定义输出

DUAL is a public table that you can use to view results from functions and calculations. SQL> select * from DUAL; D - X SQL> desc DUAL; Name                                      Null?    Type ----------------------------------------- -------- ------

SharePoint Calculated Column Formulas & Functions

SharePoint uses pretty much the same engine as Excel for it’s calculated columns and field validation stuff. There are some exceptions, such as NETWORKDAYS and some other functions not being included. Try prototyping your formulas in Excel first and

Adding New Functions to MySQL(User-Defined Function Interface UDF、Native Function)

catalog 1. How to Add New Functions to MySQL 2. Features of the User-Defined Function Interface 3. User-Defined Function 4. UDF Argument Processing 5. UDF Return Values and Error Handling 6. UDF Compiling and Installing 7. Adding a New Native Functio

POJ 1080 Human Gene Functions(LCS)

Description It is well known that a human gene can be considered as a sequence, consisting of four nucleotides, which are simply denoted by four letters, A, C, G, and T. Biologists have been interested in identifying human genes and determining their

[LeetCode]Odd Even Linked List

题目:Odd Even Linked List Given a singly linked list, group all odd nodes together followed by the even nodes. Please note here we are talking about the node number and not the value in the nodes. You should try to do it in place. The program should ru

学习Oracle分析函数(Analytic Functions)

Oracle提供了一些功能很强大的分析函数,使用这些函数可以完成可能需要存储过程来实现的需求. 分析函数计算基于一组数据行的聚合值,它们不同于聚合函数的是,它们为每一组返回多行结果.分析函数是除ORDER BY子句之外,在查询语句中最后执行的.所有的join和所有的WHERE ,GROUP BY 和HAVING子句都在分析函数之前执行.所以分析函数只能出现在select或ORDER BY子句中. 下图为11.2版本官方文档中给出的语法示意图: 下面简单介绍一下各个部分: analytic_fun