HDU 2444 The Accomodation of Students 二分图判定+最大匹配

题目来源:HDU 2444 The Accomodation of Students

题意:n个人是否可以分成2组 每组的人不能相互认识 就是二分图判定 可以分成2组 每组选一个2个人认识可以去一个双人间 最多可以有几组

思路:二分图判定+最大匹配

#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 550;
int vis[maxn];
int y[maxn];
vector <int> G[maxn];
int n, m;
int color[maxn];
bool bipartite(int u)
{
	for(int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		if(color[u] == color[v])
			return false;
		if(!color[v])
		{
			color[v] = 3 - color[u];
			if(!bipartite(v))
				return false;
		}
	}
	return true;
}
bool dfs(int u)
{
	for(int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		if(vis[v] || color[v] == 1)
			continue;
		vis[v] = true;
		if(y[v] == -1 || dfs(y[v]))
		{
			y[v] = u;
			return true;
		}
	}
	return false;
}
int match()
{
	int ans = 0;
	memset(y, -1, sizeof(y));
	for(int i = 1; i <= n; i++)
	{
		memset(vis, 0, sizeof(vis));
		if(color[i] == 1 && dfs(i))
			ans++;
	}
	return ans;
}

int main()
{
	//int T;
	//scanf("%d", &T);
	while(scanf("%d %d", &n, &m) != EOF)
	{
		for(int i = 0; i <= n; i++)
			G[i].clear();
		while(m--)
		{
			int u, v;
			scanf("%d %d", &u, &v);
			G[u].push_back(v);
			G[v].push_back(u);
		}
		memset(color, 0, sizeof(color));
		int flag = 0;
		for(int i = 1; i <= n; i++)
			if(!color[i])
			{
				color[i] = 1;
				if(!bipartite(i))
				{
					puts("No");
					flag = 1;
					break;
				}
			}
		if(flag)
			continue;
		printf("%d\n", match());

	}
	return 0;
}

HDU 2444 The Accomodation of Students 二分图判定+最大匹配,布布扣,bubuko.com

时间: 2024-10-22 00:13:19

HDU 2444 The Accomodation of Students 二分图判定+最大匹配的相关文章

HDU 2444 The Accomodation of Students二分图判定和匈牙利算法

本题就是先判断是否可以组成二分图,然后用匈牙利算法求出最大匹配. 到底如何学习一种新算法呢? 我也不知道什么方法是最佳的了,因为看书本和大牛们写的匈牙利算法详细分析,看了差不多两个小时没看懂,最后自己直接看代码,居然不到半个小时看懂了.然后就可以直接拿来解题啦. 比如topcoder上有这个算法的很详细的分析,真没看懂. 代码居然比分析更清晰了?我也不好下结论. 但是我觉得主要的思想还是有作用的. 说说我对这个算法的理解吧: 1 假设二分图分为两个集合 U, V,那么从一个集合U出发 2 U的一

HDU 2444 The Accomodation of Students (二分图判定,二分图匹配,匈牙利算法)

题意:有一堆的学生关系,要将他们先分成两个组,同组的人都不互不认识,如果不能分2组,输出No.若能,则继续.在两组中挑两个认识的人(每组各1人)到一个双人房.输出需要多少个双人房? 思路: 先判定是否为二分图,可以用黑白着色法(DFS或BFS都行).若是二分图,再进行匹配,用匈牙利算法,注:给的是整个图,没有区分男女,用邻接表比较好. 1 #include <bits/stdc++.h> 2 #define LL long long 3 using namespace std; 4 const

HDU - 2444 The Accomodation of Studentsp[二分图判定,匈牙利算法]

There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other. Now you are given all pairs of students who know

HDU 2444 The Accomodation of Students(判断是否是二分图)

题目链接 题意:n个学生,m对关系,每一对互相认识的能住一个房间.问否把这些学生分成两组,要求每组的学生都互不认识.求最多需要多少个房间. 是否能分成两组?也就是说判断是不是二分图,判断二分图的办法,用染色法 把初始点染成黑色,然后与之相连的染成白色,重复,使路径黑白相间, 如果当前点的颜色和与他相连点的颜色相同时,则说明这个图不是二分图 求最多需要多少个房间?也就是求最大匹配数. #include <iostream> #include <cstdio> #include <

hdu 2444 The Accomodation of Students

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2458    Accepted Submission(s): 1177 Problem Description There are a group of students. Some of them may know each ot

hdu 2444 The Accomodation of Students(最大匹配 + 二分图判断)

http://acm.hdu.edu.cn/showproblem.php?pid=2444 The Accomodation of Students Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2444 Description There are a group of students. Some of them may know

HDU 2444 The Accomodation of Students(二分图判定+最大匹配)

Problem Description There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other. Now you are given all pairs o

HDU 2444 The Accomodation of Students (判断是否是二分图,然后求最大匹配)

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Description There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B

hdu 2444 The Accomodation of Students 判断是否为二分图+最大匹配

The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3042    Accepted Submission(s): 1425 Problem Description There are a group of students. Some of them may know each o