深度神经网络好的网站

http://www.ipcv.org/on-object-detection/

introduce come CNN models and their pre-trained model , paper.

https://mp.weixin.qq.com/s/ZKMi4gRfDRcTxzKlTQb-Mw

introduce the development from alexNet to mask RCNN

时间: 2024-10-19 05:35:17

深度神经网络好的网站的相关文章

Deep Learning 深度学习 学习教程网站集锦

http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2

深度神经网络可视化工具集锦

深度神经网络可视化工具集锦 雷锋网按:原文作者zhwhong,载于作者的个人博客,雷锋网(公众号:雷锋网)经授权发布.  TensorBoard:TensorFlow集成可视化工具 GitHub官方项目:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算. 为了更方便 TensorFlow 程序的理

从图像到知识:深度神经网络实现图像理解的原理解析

摘要:本文将详细解析深度神经网络识别图形图像的基本原理.针对卷积神经网络,本文将详细探讨网络中每一层在图像识别中的原理和作用,例如卷积层(convolutional layer),采样层(pooling layer),全连接层(hidden layer),输出层(softmax output layer).针对递归神经网络,本文将解释它在在序列数据上表现出的强大能力.针对通用的深度神经网络模型,本文也将详细探讨网络的前馈和学习过程.卷积神经网络和递归神经网络的结合形成的深度学习模型甚至可以自动生

深度学习实践系列(2)- 搭建notMNIST的深度神经网络

如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti

深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用

深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程.对微信语音识别应用,在模型收敛速度和模型性能上都取得了有效提升--相比单GPU 4.6倍加速比,数十亿样本的训练数天收敛,测

深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格

    距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 " ,纪念这两周的熬夜,熬夜.  因为某些原因,文章发布的有点仓促,本来应该再整理实验和代码比较合适.文章都是两个主要作用: 对自己的工作总结, 方便自己回顾和分享给有兴趣的朋友. 不说废话了, 进入正题. 本次的课题很简单, 深度神经网络(AI)来预测5日和22日后的走势. (22日尚未整理, 不

&quot;如何用70行Java代码实现深度神经网络算法&quot; 的delphi版本

http://blog.csdn.net/hustjoyboy/article/details/50721535 "如何用70行Java代码实现深度神经网络算法" 的delphi版本 2016-02-23 10:58 225人阅读 评论(0) 收藏 举报 版权声明:本文为博主原创文章,未经博主允许不得转载. =====ann.pas源程序=================================== { by 阿甘 2016.2.23 参考自此篇文档如何用70行Java代码实现

深度神经网络识别图形图像的基本原理(转)

摘要:本文将详细解析深度神经网络识别图形图像的基本原理.针对卷积神经网络,本文将详细探讨网络中每一层在图像识别中的原理和作用,例如卷积层(convolutional layer),采样层(pooling layer),全连接层(hidden layer),输出层(softmax output layer).针对递归神经网络,本文将解释它在在序列数据上表现出的强大能力.针对通用的深度神经网络模型,本文也将详细探讨网络的前馈和学习过程.卷积神经网络和递归神经网络的结合形成的深度学习模型甚至可以自动生

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)

CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. Stanford University CS231