题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3836
Equivalent Sets
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Others)
Total Submission(s): 2890 Accepted Submission(s): 1006
Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
Output
For each case, output a single integer: the minimum steps needed.
Sample Input
4 0 3 2 1 2 1 3
Sample Output
4 2 Hint Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
Source
2011 Multi-University Training Contest 1 - Host
by HNU
Recommend
xubiao | We have carefully selected several similar problems for you: 3835 3828 3834 3830 3833
Statistic | Submit | Discuss | Note
题目意思:
求至少需要增添多少条边,使得该图为强连通图。
解题思路:
tarjan求强连通,然后统计入度为0和出度为0的强连通分量个数,两者的最大值即为答案。
代码:
//#include<CSpreadSheet.h> #include<iostream> #include<cmath> #include<cstdio> #include<sstream> #include<cstdlib> #include<string> #include<string.h> #include<cstring> #include<algorithm> #include<vector> #include<map> #include<set> #include<stack> #include<list> #include<queue> #include<ctime> #include<bitset> #include<cmath> #define eps 1e-6 #define INF 0x3f3f3f3f #define PI acos(-1.0) #define ll __int64 #define LL long long #define lson l,m,(rt<<1) #define rson m+1,r,(rt<<1)|1 #define M 1000000007 //#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; #define Maxn 21000 int low[Maxn],dfn[Maxn],dindex,n; int sta[Maxn],belong[Maxn],bcnt,ss; bool iss[Maxn]; int de1[Maxn],de2[Maxn]; vector<vector<int> >myv; void tarjan(int cur) { //printf(":%d\n",cur); //system("pause"); int ne; dfn[cur]=low[cur]=++dindex; iss[cur]=true; sta[++ss]=cur; for(int i=0;i<myv[cur].size();i++) { ne=myv[cur][i]; if(!dfn[ne]) { tarjan(ne); low[cur]=min(low[cur],low[ne]); } else if(iss[ne]&&dfn[ne]<low[cur]) low[cur]=dfn[ne]; } if(dfn[cur]==low[cur]) { bcnt++; do { ne=sta[ss--]; iss[ne]=false; belong[ne]=bcnt; }while(ne!=cur); } } void solve() { int i; ss=bcnt=dindex=0; memset(dfn,0,sizeof(dfn)); memset(iss,false,sizeof(iss)); for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i); } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); while(~scanf("%d",&n)) { myv.clear(); myv.resize(n+1); int m; scanf("%d",&m); for(int i=1;i<=m;i++) { int a,b; scanf("%d%d",&a,&b); myv[a].push_back(b); } solve(); if(bcnt==1) { printf("1\n0\n"); continue; } int ansa=0,ansb=0; memset(de1,0,sizeof(de1)); memset(de2,0,sizeof(de2)); for(int i=1;i<=n;i++) { for(int j=0;j<myv[i].size();j++) { int ne=myv[i][j]; if(belong[i]!=belong[ne]) { de1[belong[ne]]++;//Èë¶È de2[belong[i]]++; //³ö¶È } } } for(int i=1;i<=bcnt;i++) { if(!de1[i]) ansa++; if(!de2[i]) ansb++; } ansb=max(ansb,ansa); printf("%d\n",ansb); } return 0; }