Machine Learning—决策树

Machine Learning—决策树的相关文章

【机器学习实战】Machine Learning in Action 代码 视频 项目案例

MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素

[Machine Learning] 国外程序员整理的机器学习资源大全

本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3

[kaggle入门] Titanic Machine Learning from Disaster

Titanic Data Science Solutions¶ https://www.kaggle.com/startupsci/titanic-data-science-solutions 数据挖掘竞赛七个步骤:¶ Question or problem definition. Acquire training and testing data. Wrangle, prepare, cleanse the data. Analyze, identify patterns, and explo

Kaggle竞赛题目之——Titanic: Machine Learning from Disaster

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history.  On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy s

【machine learning】KNN算法

适逢学习机器学习基础知识,就将书中内容读读记记,本博文代码参考书本Machine Learning in Action(<机器学习实战>). 一.概述 kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别.该算法涉及3个主要因素:训练集.距离或相似的衡量.k的大小. 二.算法要点 1.指导思想 kNN算法的指导思想是"近朱者赤,近墨者黑&q

机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本

机器学习(Machine Learning)&amp;深入学习(Deep Learning)资料

<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到

OpenCV的machine learning模块使用

opencv中提供的了较为完善的machine learning 模块,包含多种ml算法,极大了简化了实验过程.然而目前网上大部分的资料(包括官方文档)中关于ml模块的使用均是针对1.0风格的旧代码的,这对我们的学习造成了极大的困扰.本文将简单介绍一下如何使用opencv的ml模块进行实验. 首先,准备实验数据,我这里使用的是<模式分类>一书中第二章上机习题的部分数据,旨在进行一个简单的调用过程进行实验.实验数据如下表所示,在实际实验过程中,使用txt文档保存数据,并且没有文件头信息(实际上o

机器学习(Machine Learning)&amp;amp;深度学习(Deep Learning)资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L