全局最小割

stoer-Wagner算法

进行n轮操作,每轮操作确定一对点s,t被割开情况下的最小割,然后将s,t合并。s,t为操作中最后剩下的两个点。

操作类似prim求最大生成树,每次将与当前集合相邻的距离最大的点合并到集合中,最后剩下s,t两点。

代码来自wiki,可以堆优化

const int maxn = 550;
const int inf = 1000000000;
int n, r;
int edge[maxn][maxn], dist[maxn];
bool vis[maxn], bin[maxn];
void init() {
    memset(edge, 0, sizeof(edge));
    memset(bin, false, sizeof(bin));
}
int contract( int &s, int &t ) {        // Find s,t
    memset(dist, 0, sizeof(dist));
    memset(vis, false, sizeof(vis));
    int i, j, k, mincut, maxc;
    for(i = 1; i <= n; i++) {
        k = -1;
        maxc = -1;
        for(j = 1; j <= n; j++)if(!bin[j] && !vis[j] && dist[j] > maxc) {
                k = j;
                maxc = dist[j];
            }
        if(k == -1)return mincut;
        s = t;
        t = k;
        mincut = maxc;
        vis[k] = true;
        for(j = 1; j <= n; j++)if(!bin[j] && !vis[j])
                dist[j] += edge[k][j];
    }
    return mincut;
}

int Stoer_Wagner() {
    int mincut, i, j, s, t, ans;
    for(mincut = inf, i = 1; i < n; i++) {
        ans = contract( s, t );
        bin[t] = true;
        if(mincut > ans)mincut = ans;
        if(mincut == 0)return 0;
        for(j = 1; j <= n; j++)if(!bin[j])
                edge[s][j] = (edge[j][s] += edge[j][t]);
    }
    return mincut;
}
时间: 2024-10-10 09:32:46

全局最小割的相关文章

POJ2914 Minimum Cut【全局最小割】【Stoer-Wangner】

题目链接: http://poj.org/problem?id=2914 题目大意: 提一个无向有重边的图,有重边的边权累加起来,求全局最小割. 思路: 一个无向连通图,去掉一个边集可以使其变成两个连通分量则这个边集就是割集.最小割 集当然就是权和最小的割集. 这是一个最简单的全局最小割模板题.直接套上模板就可以了.来说说Stoer-Wangner算 法吧. Stoer-Wangner算法: 对于图中的任意两个顶点u和v,若u,v属于最小割的同一个集合中,那么僵顶点u和顶点 v合并后并不影响图的

POJ 2914 Minimum Cut 全局最小割

裸的全局最小割了吧 有重边,用邻接矩阵的时候要小心 #include<iostream> #include<cstdio> #include<bitset> #include<cstring> #define MOD 1000000007 #define maxn 509 using namespace std; int a[590][590],wage[maxn],in[maxn],vis[maxn]; int n,x,y,v; int find(int&

UVALive 5099 Nubulsa Expo 全局最小割 非网络流 n^3

题目链接:点击打开链接 题意: 给定n个点m条无向边 源点S 下面m行给出无向边以及边的容量. 问: 找一个汇点,使得图的最大流最小. 输出最小的流量. 思路: 最大流=最小割. 所以题意就是找全局最小割. 和源点无关,因为不关心源点在哪个点集里. 模版题: O(n^3) #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std

POJ 2914 Minimum Cut (全局最小割)

[题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码(递归)] #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int INF=0x3f3f3f3f; const int MAX_N=510; int v

全局最小割 学习总结

全局最小割的意思是在一个无向图中任取S和T,求最小割的最小值 还有一种描述是删掉无向图中的边使得其不连通的最小代价 当然,这种题目可以用分治+最小割来求解 但是时间复杂度大约在O(n^4)左右 有一种更好的求解方法可以在O(n^3)的时间复杂度内求解 做法是这样的: 首先对于图中任意两点S->T 要么S和T不在一个集合里时是答案,答案显然是S和T的最小割 否则S和T在一个集合里,我们可以将S和T缩成一个点,不难证明这样是等效的 我们模拟这个过程,每次任取S和T跑最小割,时间复杂度大概跟分治+最小

图的全局最小割的Stoer-Wagner算法及例题

Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: ------------------------------------------------------------------------------------------------------------------------- (1)首先初始化,设最小割ans = INF                                

POJ 2914 - Minimum Cut - 全局最小割,Stoer-Wagner算法

题目大意:给定一个N个点.M条边的无向带权图,边的权值均为正整数.若要使它变成非连通图,需要移除的边总权值最小是多少? N≤500,图中不存在自环,但可能有重边(这里题意没交代清楚). Stoer-Wagner算法裸题.英文维基:https://en.wikipedia.org/wiki/Stoer%E2%80%93Wagner_algorithm 该算法的思想之一是:对于一个无向连通图,选定某两点s,t,以及该图的一个s-t割C,则"C是该图的全局最小割"是"C是s-t的最

POJ2914 Minimum Cut 【全局最小割】(Stoer_Wagner)

Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 7610   Accepted: 3203 Case Time Limit: 5000MS Description Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum c

全局最小割模版 n^3

//点标从0-n-1, 開始时先init 复杂度n^3 //对于边(u,v,flow): //g[u][v]+=flow; //g[v][u]+=flow; typedef long long ll; const int N = 305; const ll inf = 1e18; ll g[N][N], w[N]; int a[N], v[N], na[N]; ll mincut(int n) { int i, j, pv, zj; ll best = inf; for(i = 0; i < n