2017-2018-1 20155315 《信息安全系统设计基础》第13周学习总结

2017-2018-1 20155315 《信息安全系统设计基础》第13周学习总结

教材学习内容总结

  • 本周老师让我们学习的是自己觉得最终要的一章,我学习的是第十章。在我看来,不论是什么产品,都存在设计端与使用端,更确切的说,正因为有使用端,才需要设计端。因此,使用端的使用感受最为重要,而作为一个对外的平台与程序,I/O系统是基础和核心,也因此我选择系统级I/O进行深入学习。
  • 主要知识点:
    • 输入是从I/O设备复制数据到主存
    • 输出是从主存复制数据到I/O设备

UnixI/O

  • 每个unix文件都是一个m字节的序列。
  • unixI/O是由内核提供的。
  • I/O设备都是文件,输入就是写文件,输出就是读文件。
  • 程序要求内核打开文件来说明它想要访问相应的I/O设备,内存返回描述符,fd = Open("文件名",flag参数,mode参数);,此时fd就是一个描述符。
  • 每个进程都有三个文件,头文件是
  • 文件位置k是字节偏移量,初始为0,用seek查找当前位置。
  • 读是将文件复制n个字节到内存中,文件位置增加到k+n,当n大于文件字节的时候,会返回EOF错误,表示读到文章结尾。

文件

  • 普通文件分文本文件和二进制文件,文本文件致函ASCII或Unicode字符。
  • 对内核而言,文本文件和二进制文件没有区别
  • 文本文件每一行都是字符序列
  • 目录是一组包含链接的文件。
  • 路径名是一个字符串,有绝对路径和相对路径。

打开和关闭文件

  • 打开文件

    int open(char *filename, int flags, mode_t mode)
    flags 行为
    O_RDONLY 只读
    O_WRONLY 只写
    O_RDWR 可读可写
    O_CREAT 文件不存在即创建一个截断文件
    O_TRUNC 文件存在就截断
    O_APPEND 写之前设置是文件在文件结尾
  • 关闭文件
    int close(int fd);

读写文件

  • 读文件

    ssize_t Read(int fd, void *buf, size_t count);
    返回值 意义
    -1 错误
    0 读到文章末尾
    其他 实际传送的字节数量
  • 写文件
    ssize_t Write(int fd, const void *buf, size_t count);
  • 一次一个字节地从标准输入复制到标准输出
    #include "csapp.h"
    int main(void)
    {
    char c;
    while(read(STDIN_FILENO,&c,1)!=0)
    write(STDOUT_FILENO,&c,1);
    exit(0);
    }

  • ssize_t被定义为long,是有符号的;size_t被定义为unsigned long,是无符号数
  • 可能出现不足值
    • 读时遇到FOF
    • 从终端读文本行
    • 读和写网络套接字

RIO(Robust I/O)

  • 无缓冲的输入输出:直接在内存和文件之间传送数据

    ssize_t rio_readn(int fd, void *usrbuf, size_t n);
    ssize_t rio_writen(int fd, void *usrbuf, size_t n);
  • read遇到EOF只能返回一个不足值,write不会返回不足值。
  • 被中断时函数会重启read或write
  • 带缓冲的输入输出:数据存在缓冲区
    ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);
    ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
  • readlineb读取一行文本到缓冲区(包括换行符),用NULL(0)结束,最多读maxlen-1个字节
  • rio_readnb读取n个字节到缓冲区
  • 一次一行地从标准输入复制一个文本文件到标准输出
    #include "csapp.h"
    int main(int argc,char **argv)
    {
    int n;
    rio_t rio;
    char buf[MAXLINE];
    rio_readinitb(&rio,STDIN_FILENO);
    while((n=rio_readlineb(&rio,buf,MAXLINE))!=0)
    rio_writen(STDOUT_FILENO,buf,n);
    }

    我的理解:读文件主要有三部分。一是init函数初始化,将文件描述符与读缓存区联系在一起;二是readline或readnb将文本复制到读缓存区;三是内部的read函数,当缓冲区为空,调用read填满,非空的时候,read从读缓存区复制字节到用户缓冲区,也就是说,涉及到两个缓冲。

读取

读取元数据

  • stat函数以一个文件名作为输入,fstat以文件描述符作为输入
st_mode 文件访问许可位和文件类型
S_ISREG(m) 普通文件
S_ISDIR(m) 目录文件
S_ISSOCK(m) 网络套接字
  • 查询和处理一个文件的st_mode位。

    #include "csapp.h"
    int main(int argc,char **argv)
    {
    struct stat stat;
    char *type,*readok;
    Stat(argv[1],&stat);
    if(S_ISREG(stat.st_mode))
      type = "regular";
    else if(S_ISDIR(stat.st_mode))
      type = "directory";
    else
      type = "other";
    if((stat.st_mode & S_IRUSR))
      readok = "yes";
    else
      readok = "no";
    printf("type:%s,read:%s\n",type,readok);
    }

读取目录

opendir
readdir//返回inode和文件名,出错返回NULL,设置errno

共享文件

  • 描述符表:每个进程有一个独立的描述表,相当于本地文件
  • 文件表:打开文件的集合,所有的进程共享,包括当前的文件地址、引用计数及一个指向v-node中对应项的指针,相当于总表
  • v-node表:所有进程共享,包含stat中的大多数信息,相当于详情。
  • 多个描述符可通过不同的文件表表项来引用同一个文件。
  • 多进程时,子进程继承父进程,复制父进程的描述符表,在内核删除相应表项前,父子进程都要关闭描述符。

重定向

dup2函数,复制oldfd到newfd,若newfd已经打开,dup2会先关闭它。

标准I/O

练习题

10.1

  • 代码

    #include "csapp.h"
    int main()
    {
    int fd1,fd2;
    fd1=open("foo.txt",O_RDONLY,0);
    close(fd1);
    fd2=open("baz.txt",O_RDONLY,0);
    printf("fd2=%d\n",fd2);
    exit(0);
    }
  • 运行结果

  • 答案:Unix进程生命周期开始时,打开的描述符赋给了stdin(描述符0)、stdout((描述符1)和stderr(描述符2)。open函数总是返回最低的未打开的描述符,所以第一次调用open会返回描述符3,调用close函数会释放描述符3。最后对open的调用会返回描述符3,因此程序的翰出是“fd2=3”。当文件不存在是,输出“fd2=-1”

10.2

#include "csapp.h"
int main()
{
int fd1,fd2;
char c;
fd1=open("foobar.txt",O_RDONLY,0);
fd2=open("foobar.txt",O_RDONLY,0);
read(fd1,&c,1);
read(fd2,&c,1);
printf("c=%c\n",c);
exit(0);
}
  • 运行结果

  • 答案:fd2读操作读取foobar.txt的第一个字节。

10.3

#include "csapp.h"
int main()
{
int fd;
char c;
fd = open("foobar.txt",O_RDONLY,0);
if(fork()==0)
{
read(fd,&c,1);
exit(0);
}
wait(NULL);
read(fd,&c,1);
printf("c=%c\n",c);
exit(0);
}
  • 运行结果

  • 答案:描述符fd在父子进程中都指向同一个打开文件表表项,当子进程读取文件的第一个字节时,文件位置加1。因此,父进程会读取第二个字节,也就是o

10.4

如何用dup2将标准输入重定向到描述符5?

回答:dup2(5,0)

10.5

#include "csapp.h"
int main()
{
int fd1,fd2;
char c;
fd1=open("foobar.txt",O_RDONLY,0);
fd2=open("foobar.txt",O_RDONLY,0);
read(fd2,&c,1);
dup2(fd2,fd1);
read(fd1,&c,1);
printf("c=%c\n",c);
exit(0);
}
  • 答案:将fd1重定向到fd2,因此第二个fd1指的是fd2+1
  • 运行结果

    回答:将fdl重定向到了fd2,输出实际上是c=o

教材学习中的问题和解决过程

问题1: 使用带缓存的RIO包的时候,为什么要先设定一个缓存区,再将其中的数据转移到缓冲区呢?

解决1:

带缓冲的I/O是指进程对输入输出流进行了改进,提供了一个流缓冲,当用fwrite函数网磁盘写数据时,先把数据写入流缓冲区中,当达到一定条件,比如流缓冲区满了,或刷新流缓冲,这时候才会把数据一次送往内核提供的块缓冲,再经块缓冲写入磁盘。

也就是说,如果直接将数据写入缓存区就系统调用,与不带缓存的RIO是一样的,设定双重缓冲是为保证算法的效率,减少系统调用的次数。

问题2: 为什么使用一个static缓冲区就不是线程安全的?什么是线程安全?

解决2:

非线程安全是指多线程操作同一个对象可能会出现问题。而线程安全则是多线程操作同一个对象不会有问题。

我的理解:static缓冲区是静态的,就好像是静态变量一样,本地操作即单一线程调用的时候是不会出错的,但它不是可以共享的,也就是说其他线程调用的时候就可能出现问题。

代码学习中的问题和解决过程

问题1: 编译书p629代码时

解决1: 将csapp.c、csapp.h和cpfile.c编译在一起gcc csapp.h csapp.c cpfile.c -o cpfile -lpthread

问题2: 编译书p634代码时

解决2: 使用man readdir发现有一个系统调用版本和c版本,使用man 3 readdir发现在csapp.h中缺少dirent.h头文件,加上之后编译通过,运行成功

代码托管

(statistics.sh脚本的运行结果截图)

结对及互评

其他(感悟、思考等,可选)

认真学习I/O相关知识后,知道了输入输出的更多知识,也了解到系统在处理输入输出的时候会操作什么改变什么,希望对今后的学习有所帮助。

学习进度条

代码行数(新增/累积) 博客量(新增/累积) 学习时间(新增/累积) 重要成长
目标 5000行 30篇 400小时
第一周 5/5 1/1 25/25
第二周 236/241 3/4 30/55
第三周 169/410 2/6 30/85
第四周 169/410 2/8 50/135
第五周 1177/1587 2/10 30/165
第六周 1826/3413 2/12 30/195
第七周 977/4390 3/15 30/225
第八周 977/4390 2/17 30/255
第九周 977/4390 2/19 30/285
第十周 977/4390 0/15 30/315
第十一周 977/4390 2/21 25/335
第十二周 977/4390 0/21 25/360
第十三周 977/4390 2/23 30/390
  • 计划学习时间:20小时
  • 实际学习时间:30小时

(有空多看看现代软件工程 课件

软件工程师能力自我评价表)

参考资料

时间: 2024-10-25 05:04:03

2017-2018-1 20155315 《信息安全系统设计基础》第13周学习总结的相关文章

信息安全系统设计基础第13周学习总结

知识点总结 并发编程*序 并发:逻辑控制流在时间上重叠. 应用级并发的应用: 访问慢速I/O设备 与人交互 通过推迟工作以降低延迟 服务多个网络客户端 在多核机器上进行并行计算 进程 I/O多路复用 线程 基于进程的并发编程 最简单的构造并发程序的方法是进程. 下图是基于进程的并发echo服务器: 图 几点需要说明的内容: 因为服务器会运行很长时间,所以需要一个SIGCHLD处理程序来回收僵死子进程的资源. 父子进程必须关闭它们各自的connfd拷贝,以避免存储器泄露. 因为套接字的文件表表项的

20145216 史婧瑶《信息安全系统设计基础》第一周学习总结

20145216 <信息安全系统设计基础>第一周学习总结 教材学习内容总结 Linux基础 1.ls命令 ls或ls .显示是当前目录的内容,这里“.”就是参数,表示当前目录,是缺省的可以省略.我们可以用ls -a .显示当前目录中的所有内容,包括隐藏文件和目录.其中“-a” 就是选项,改变了显示的内容.如图所示: 2.man命令 man命令可以查看帮助文档,如 man man : 若在shell中输入 man+数字+命令/函数 即可以查到相关的命令和函数:若不加数字,那man命令默认从数字较

20145311 《信息安全系统设计基础》第一周学习总结

20145311 <信息安全系统设计基础>第一周学习总结 教材学习内容总结 常用的部分命令 CTRL+SHIFT+T:新建标签页,编程时有重要应用: ALT+数字N:终端中切换到第N个标签页,编程时有重要应用: Tab:终端中命令补全,当输入某个命令的开头的一部分后,按下Tab键就可以得到提示或者帮助完成: CTRL+C:中断程序运行 Ctrl+D:键盘输入结束或退出终端 Ctrl+S: 暂定当前程序,暂停后按下任意键恢复运行 Ctrl+A: 将光标移至输入行头,相当于Home键 Ctrl+E

20145216史婧瑶《信息安全系统设计基础》第九周学习总结

20145216史婧瑶<信息安全系统设计基础>第九周学习总结 教材内容总结 第十章 系统级I/O 输入/输出(I/O)是在主存和外部设备之间拷贝数据的过程. 第一节 Unix I/O 这一节涉及到操作系统的基本抽象之一--文件.也就是说,所有的I/O设备都被模型化为文件,而所有的输入输出都被当做对相应文件的读/写.相关的执行动作如下: 1.打开文件: 应用程序向内核发出请求→要求内核打开相应的文件→内核返回文件描述符 文件描述符:一个小的非负整数,用来在后续对此文件的所有操作中标识这个文件.有

20145311 《信息安全系统设计基础》第二周学习总结

20145311 <信息安全系统设计基础>第二周学习总结 教材学习内容总结 重新学习了一下上周的一部分命令:grep main wyx.c(grep的全文检索功能)ls > ls.txt :ls内容输出到文本find pathname -mtime -n/+nfind -size -n/+n (find的功能还是比较强大) 简单地学习了一下vim编辑器,跟着vimtutor简单地学了一些,在linux bash中使用vim能够极大地提高效率, vim的用法比较多,只学习了其中简单的一部分

20145339《信息安全系统设计基础》第一周学习总结

20145339顿珠达杰<信息安全系统设计基础>第一周学习总结 ◆ Linux是一个操作系统.如果使用GUI,Linux和Windows没有什么区别.Linux学习应用的一个特点是通过命令行进行使用. 物理机系统上可以通过使用[Ctrl]+[Alt]+[F1]-[F6]进行终端和图形界面切换,在线实验环境中按下[Ctrl]+[Alt]+[F7]来完成切换.普通意义上的 Shell 就是可以接受用户输入命令的程序,Unix/Linux 操作系统下的 Shell 既是用户交互的界面,也是控制系统的

2017-2018-1 20155228 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155228 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 常见的存储技术 RAM 随机访问存储器(Random-Access Memory, RAM)分为两类:静态的和动态的.静态 RAM(SRAM)比动态RAM(DRAM)更快,但也贵得多.SRAM用来作为高速缓存存储 器,既可以在CPU芯片上,也可以在片下.DRAM用来作为主存以及图形系统的帧缓冲 区.典型地,一个桌面系统的SRAM不会超过几兆字节,但是DRAM却有几百或几千兆 字节. SRAM将每

2017-2018-1 20155332 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155332 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 简单模型中,存储器是一个线性的字节数组.真实模型中,是一个具有不同容量,成本,访问时间的存储层次结构(存储器山) 程序的局部性很重要,对程序性能有很重要的影响. 计算机系统一个基本而持久的思想,如果你理解了系统是如何将数据在存储器层级结构中上下移动,你就可以编写程序,让数据存储在层次结构中较高的地方,从而CPU可以更快的访问到他们. 编写程序实现功能是最简单的,如何让编写的程序拥有最高的性能,例

2017-2018-1 20155227 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155227 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 第六章 随机访问存储器 随机访问存储器分为:静态RAM(SRAM)和动态RAM(DRAM),静态RAM(SRAM)比动态RAM(DRAM)更快,但也贵很多. (1)静态RAM SRAM将每个位存储在一个双稳态的存储器单元里,每个单元是用一个六晶体管电路来实现的. 属性:它可以无限制地保持在两个不同的电压配置或状态之一.其他任何状态都是不稳定的. 特点:由于SRAM的双稳态特性,只要有电,它就会永

2017-2018-1 20155334 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155334 <信息安全系统设计基础>第九周学习总结 学习目标: 了解常见的存储技术(RAM.ROM.磁盘.固态硬盘等) 理解局部性原理 理解缓存思想 理解局部性原理和缓存思想在存储层次结构中的应用 高速缓存的原理和应用 教材学习内容总结 一.常见的存储技术: 基本的存储技术包括随机存储器(RAM).非易失性存储器(ROM)和磁盘. 1. RAM分静态RAM(SRAM)和动态RAM(DRAM). 2. SRAM快些,主要用做CPU芯片上的高速缓存,也可以用作芯片下的