JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥

http://172.20.6.3/Problem_Show.asp?id=1518
最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化。
首先是前缀和容斥,很好理解。
第二个优化大致如下:
u为莫比乌斯函数,t为gcd(x,y)为i的倍数的数的个数;
满足gcd(x,y)=1的数字对的数量=sigma(1<=i<=min(x,y))u[i]*t[i];
t[i]=(x/i)*(y-i);
由小数向下取整可知有连续的i满足x/i为定值,y/i也是定值,所以可以分块计算,用u[i]的前缀和*定值,加快求gcd(x,y)=1的对数的速度。

代码

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<cmath>
 5 #include<iostream>
 6 using namespace std;
 7 const int maxn=50010;
 8 int n;
 9 int a,b,c,d,k;
10 bool vis[maxn]={};
11 int ur[maxn]={},su[maxn]={},sum[maxn]={},tot=0;
12 void doit(){
13     sum[1]=1;ur[1]=1;
14     for(int i=2;i<maxn;i++){
15         if(!vis[i]){ur[i]=-1;su[++tot]=i;}
16         for(int j=1;j<=tot&&i*su[j]<maxn;j++){
17             int z=i*su[j];vis[z]=1;
18             if(i%su[j]==0)break;
19             ur[z]=ur[su[j]]*ur[i];
20         }
21         sum[i]=sum[i-1]+ur[i];
22     }
23 }
24 int  getit(int x,int y){
25     int z=0,nex=0;
26     if(x>y)swap(x,y);
27     for(int i=1;i<=x;i=nex+1){
28         int xx=x/i,yy=y/i;
29         nex=min(x/xx,y/yy);
30         z+=(sum[nex]-sum[i-1])*xx*yy;
31     }
32     return z;
33 }
34 int main(){
35     doit();int ans=0;
36     scanf("%d",&n);
37     while(n-->0){
38         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
39         a-=1;c-=1;
40         a/=k;b/=k;c/=k;d/=k;
41         ans=0;ans+=getit(b,d);ans-=getit(b,c);ans-=getit(a,d);ans+=getit(a,c);
42         printf("%d\n",ans);
43     }
44     return 0;
45 }

时间: 2024-10-04 11:17:38

JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥的相关文章

HDU 5072 Coprime (莫比乌斯反演+容斥+同色三角形)

Coprime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 1469    Accepted Submission(s): 579 Problem Description There are n people standing in a line. Each of them has a unique id number. Now

HDU 5213 分块 容斥

给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询问的答案为 $[l,v]+(r,u)-[l,u)-(r,v]$,那么我们离线询问,将一个询问分成四个,分块暴力就行了. 然后就是注意细节,不要发生越界,访问错位置之类比较蠢的问题了. /** @Date : 2017-09-24 19:54:55 * @FileName: HDU 5213 分块 容斥.cpp

bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反

bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:莫比乌斯反演,ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k) 代码1:超时. #include<iostream> #include&l

bzoj2301(莫比乌斯反演+分块)

传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析:gcd(x,y)==k等价于gcd(x/k,y/k)==1,根据莫比乌斯反演很容易求出[1,n][1,m]的gcd(x,y)==1的对数,但询问有50000个,直接去计算肯定会TLE,这里得分块处理加速计算,因为对于(n/i)和(m/i)在一定区间内的值是一定的,根据这点可以每

BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 思路:本题使用莫比乌斯反演要利用分块来优化,那么每次询问的复杂度降为2*sqrt(n)+2*sqrt(m).注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k).所有对这连续的区间可以一次求出

ACdream 1148(莫比乌斯反演+分块)

传送门:GCD SUM 题意:给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)       if(gcd(i,j) == 1) ans ++,ansx += i,ansy += j;cout << ans << " " << ansx << " &qu

【莫比乌斯反演+分块】BZOJ1101-[POI2007]Zap

[题目大意] 对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. [思路] 前面的思路同HDU1695 不过不同的是这道题中(a,b)和(b,a)算作同一种情况,不需要再减去重复的情况. 这道题运用了分块加快效率.我们可以注意到是相同的,b'(b'/i)b表示和当前商相同的最后一位[b'/d],d'(d'/i)同理,pos为两者中较小的一个.我们预处理Miu的前缀和,就可以将一样的*(sum[pos]-pos[k-1])即可! ??BZOJ一定要

BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/50898726 http://blog.csdn.net/qq_21995319/article/details/49800999 for(int i=1;i<=1;i++) for(int j=1;j<=1;j++) f[i○j]=a[i]*b[j]; 当○为按位或时,这种运算就称为集合并卷积.