1205 N阶楼梯上楼问题

/*
题目描述:
N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)
输入:
输入包括一个整数N,(1<=N<90)。
输出:
可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。
样例输入:
4
样例输出:
5
基本思路:
走到第n阶时,可能是从第n-1阶走一步到的,也可能是从n-2阶走两阶到的,设F(n)为走到n阶的种数,则F(n)=F(n-1)+F(n-2).
这是一个动态规划的问题,其实就是一个斐波那契数列。
1 2 3 5 8 13 ......
*/
# include <stdio.h>

int main(void)
{
	int n;
	int step[50];
	while(scanf("%d", &n) != EOF)
	{
		getchar();    //吸收回车符。
		if(n < 0) break;
		int i;
		step[1] = 1;
		step[2] = 2;
		for(i = 3; i <= n; i++)
		{
			step[i] = step[i-1] + step[i-2];
		}
		printf("%d\n",step[n]);
	}
	return 0;
}

时间: 2024-10-09 22:47:59

1205 N阶楼梯上楼问题的相关文章

九度OJ 1205 N阶楼梯上楼问题 (DP)

题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2817 解决:1073 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整数N,(1<=N<90). 输出: 可能有多组测试数据,对于每组数据, 输出当楼梯阶数是N时的上楼方式个数. 样例输入: 4 样例输出: 5 基本思路: 走到第n阶时可能是从第n-1阶走一步到的,也可能是从n-2阶走两阶到的, 设F(n)为走到n阶的走法数量,则状态

九度OJ—题目1205:N阶楼梯上楼问题 (非递归)

题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整数N,(1<=N<90). 输出: 可能有多组测试数据,对于每组数据, 输出当楼梯阶数是N时的上楼方式个数. 样例输入: 4 样例输出: 5 来源: 2008年华中科技大学计算机保研机试真题 答疑: 解题遇到问题?分享解题心得?讨论本题请访问:http://t.jobdu.com/thread-7928-1-1.html 基本思路: 走到第n阶时可能是从第n-1阶走一步到的,也可能

题目1205:N阶楼梯上楼问题(递推求解)

题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:4547 解决:1836 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整数N,(1<=N<90). 输出: 可能有多组测试数据,对于每组数据,输出当楼梯阶数是N时的上楼方式个数. 样例输入: 4 样例输出: 5 #include<iostream> #include<stdio.h> #include<qu

九度 题目1205:N阶楼梯上楼问题

题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整数N,(1<=N<90). 输出: 可能有多组测试数据,对于每组数据, 输出当楼梯阶数是N时的上楼方式个数. 样例输入: 4 样例输出: 5 分析:第n阶台阶的方法等于上到第n-1阶台阶的方法加上第n-2阶的台阶的方法之和,因为89阶的时候已经超过2的32次方,所以用long long int 代码如下: #include <stdio.h> long long int

题目1205:N阶楼梯上楼问题

题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整数N,(1<=N<90). 输出: 可能有多组测试数据,对于每组数据,输出当楼梯阶数是N时的上楼方式个数. 样例输入: 4 样例输出: 5 1 import java.util.Scanner; 2 3 4 public class Main{ 5 public static void main(String[]args){ 6 long[]F=new long[90]; 7 F[

计算机考研复试真题 N阶楼梯上楼问题

题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描述: 可能有多组测试数据,对于每组数据, 输出当楼梯阶数是N时的上楼方式个数. 示例1 输入 4 输出 5 /*程序设计思想:类似于斐波拉契数列,采用迭代思想.*/ #include <iostream> using namespace std; long long F[100]; int main() { F[1] = 1; F[2

[编程题] N阶楼梯上楼问题

import sys for line in sys.stdin: N=int(line.split()[0]) d1=1 d2=2 if(N==1): print 1 continue elif(N==2): print 2 continue for i in xrange(N-2): d1, d2=d2, d1+d2 print d2 动态规划,入门题,属于 斐波那契数列 的变形, 没学过算法之前使用穷举法发现耗时较大.

华为机试题 N阶楼梯的走法,每次走一步或者两步

在Stairs函数中实现该功能: 一个楼梯有N阶,从下往上走,一步可以走一阶,也可以走两阶,有多少种走法? (0<n<=30)<> 例如3阶楼梯有3种走法: 1.1.1 1.2 2.1 输入样例: 3 返回值样例: 3 思路:这是最典型的类似斐波那契数列的变型.N阶楼梯,第一步有两种走法,1.走一步,则剩下N-1级      2,走两步,剩下N-2级      所以f(n)=f(n-1)+f(n-2) public static int ways(int n){ if(n==1)

n阶楼梯,一次走1,2,3步,求多少种不同走法

##已知n阶楼梯,一次可以迈1,2,3步.求所有走法## 如果要列出走法,时间复杂度太高,O(n)=2**n,前两个函数遍历走法.## 如果只是单纯列出走法数量,就简单多了,也但是很容易内存爆表. ## n层走法,可以视为n-1层再走一步,n-2层走两步,n-3层走三步.题目都可以按这个思路解决import copy,timelv=5n1=1000000fzd=0lg=[]if lv<=1:    def dg(ln,n,l):        global fzd        fzd+=1